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1. Introduction

When deciding whether to tax a product, policymakers typically consider the effects of
the intervention on price and output. For this reason, the study of tax pass-through has
received considerable attention in economics (Kotlikoff and Summers 1987; Fullerton
and Metcalf 2002). While most of this literature focuses on schemes imposing the same
tax amount on all products in the industry, in practice, many taxes target only a subset
of firms or products, and may even impose different amounts depending on the firm
or product characteristics. These targeted taxes are often motivated by the goal of
correcting negative externalities—such as pollution, congestion, or health harms—that
vary across products. In other cases, theymay also aim to offset regulatory asymmetries,
particularly in settings where digital platforms compete with traditional firms subject
to stricter regulatory regimes. For instance, platforms like Uber and Airbnb, which
operate under more flexible regulatory frameworks than traditional taxis and hotels,
compete directly with these incumbents and have been associated with externalities
such as urban congestion and short-term housing shortages (Gurran and Phibbs 2017;
Li et al. 2022).

While targeted taxation of platform services has gained traction in policy debates,
its effects are not straightforward.1 Depending on pass-through rates, platform-targeted
taxes may impose substantial burdens on users, especially when price changes propa-
gate across multiple sides of the platform. Moreover, by altering relative prices, these
taxes may shift demand across services and reshape market competition. This paper
empirically examines the pass-through and market effects of taxes targeting digital plat-
forms that compete with traditional incumbents, and evaluates whether such policies
effectively address the market failures they aim to correct.2

The tax implemented in Chicago since January 6, 2020 provides an informative case
study to investigate these questions due to the large asymmetries in the tax amounts.
Nominally motivated by a desire to reduce congestion and raise revenues for the city
budget, the city of Chicago taxed ride-sharing (e.g., Uber and Lyft) but did not impose
any surcharge to consumers taking rides with traditional taxis. In particular, Chicago
replaced the flat fee of $0.72 on all trips provided by a ride-sharing company with a tax

1Taxes specifically targeting some of the services offered by large digital platforms have been on the
policy agenda since 2014. See for example, the OECD report available at: https://web-archive.oecd.org/
2014-04-16/274984-comments-action-1-tax-challenges-digital-economy.pdf.

2A two-page summary of a previous version of this paper has beenpublished as part of the Proceedings
of the 23rd ACM Conference on Economics and Computation. See Leccese (2022) for additional details.
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scheme that charges trips differently depending on the type of service (single or shared),
its endpoints and time.3 By taxing ride-sharing up to $3.00 per trip, this policy imposed
the highest surcharge faced by ride-sharing companies in the US. In the month before
the policy, taxis’ average price per mile for a ride between two and four miles starting
or ending in downtown Chicago was $4.94, whereas the same trip cost on average $4.30
per mile using the single service of ride-sharing companies. A ride of this kind faced
the highest tax level under the new policy, and, if completely passed on to riders, the
tax would make taxis cheaper.

The empirical approach of the paper leverages the introduction of the tax on ride-
sharing trips as a source of exogenous variation to estimate the effects on prices, deter-
mine the tax pass-through rate, and quantify changes in the number of ride-sharing
and taxi trips, as well as congestion measures. However, a simplistic comparison of
market outcomes before and after the tax implementation would yield biased estimates,
as the tax was introduced immediately following a period of holidays, during which
activities typically slow down before picking up pace afterward. To address this issue of
recurrent seasonal effects around the tax implementation date, I utilize a difference-in-
differences design. This involves comparing the change in market outcomes after the
tax was implemented on Monday, January 6, 2020, with the corresponding period in the
preceding year.

This paper considers three questions in the context of the Chicago ride-sharing
tax. First, I examine the pass-through of a transaction tax on ride-sharing services.
These companies operate as peer-to-peer marketplaces (or, two-sided platforms) that
connect riders with drivers. Pass-through may differ in this setting because platforms
do not only account for riders’ responses to the change in prices, but also internalize
the potential change in drivers’ willingness to supply rides. This can lead to even higher
price increases. Second, I quantify the extent to which the tax shifts demand back
to traditional taxis, and how this effect varies across different areas of the city. This
sheds light on the substitutability between traditional taxis and ride-sharing and its
determinants. Third, I consider the effect of the tax on congestion. The exacerbation of
congestion is a critical issue in many large and growing metropolitan areas, and taxes
have been a widely used tool to reduce traffic. Typically, these congestion charges have
targeted all private vehicles (as seen in London) or, at the very least, both ride-sharing
companies and traditional taxi services (aswitnessed inNewYork City in 2019). However,

3I define shared rides as those in which riders make different bookings and are picked up separately.
Prices for these rides refer to the price paid by each rider.
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motivated by an internal analysis indicating that in Chicago ride-sharing companies
are major contributors to traffic congestion, especially in the downtown area, the city
justified the implementation of the tax as a targeted measure to tackle congestion.4

The results of my analyses provide evidence that taxing ride-sharing had economi-
cally significant effects on market outcomes. In particular, prices rose across all ride-
sharing services, with tax pass-through rates exceeding 100%. Price increases were es-
pecially pronounced (more than 12%) for rides beginning or ending in the downtown
area, where the tax was highest, prompting riders to substitute single with shared rides
but leaving the number of taxi pickups unchanged. For rides starting and ending out-
side of downtown, the higher ride-sharing prices led to a decline in the usage of both
types of ride-sharing services, again without affecting taxi pickups.

Overall, the tax hurt riders through higher ride-sharing prices and reshaped the
demand for rides in Chicago, resulting in a decrease in the overall number of daily
trips via ride-sharing and taxis. While this helped alleviate congestion, as evidenced by
higher average speeds and reduced delay rates, particularly in downtown, the overall
benefit remains relatively modest in terms of magnitude and economic significance.
These findings suggest that road pricing targeting also taxis and private cars would be
more effective in reducing traffic congestion.

Several empirical studies have documented a significant heterogeneity in the pass-
through rates of taxes across different markets in which traditional one-sided firms
operate (Poterba 1996; Besley and Rosen 1999; Kenkel 2005; Doyle and Samphantharak
2008).5 However, the pass-through rates of taxes on ride-sharing platforms are affected
by the fact they provide competing services—i.e., single and shared rides—(Besanko,
Dubé and Gupta 2005; Agrawal and Hoyt 2019), and by network effects between drivers
and riders.6 Empirically studying the pass-through of taxes on two-sided platforms
is particularly relevant in light of the recent initiatives undertaken by governments
around the world aimed at capturing a larger part of the digital value creation through

4The internal study is available at: https://www.chicago.gov/content/dam/city/depts/bacp/Outreach%
20and%20Education/MLL_10-18-19_PR-TNP_Congestion_Report.pdf, accessed on 2/26/2024.

5Specific attention has also been devoted to firms’ and consumers’ short-run responses to taxes. An
example is offered by Hindriks and Serse (2019) who examine the short-run impact of a tax on alcoholic
beverages on the retail prices of six major brands of spirits.

6A few existing papers have studied taxation in the context of two-sided markets. Bibler, Teltser
and Tremblay (2021) show that the enforcement of a 10% tax reduces the price paid to Airbnb hosts by
2.4% and increases the total price renters pay by 7.6%. Wilking (2020) finds that shifting the obligation
to remit taxes from independent renters to Airbnb increases both prices and revenues. In a different
setting, Gorodnichenko and Talavera (2017) show how pass-through rates of exchange rate fluctuations
are stronger (between 60% and 75%) in online markets than in regular stores.
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taxes (Bourreau, Caillaud and De Nijs 2018).
This paper contributes to the empirical literature on the competition between online

peer-to-peer platforms (Einav, Farronato and Levin 2016) and traditional incumbent
firms. In industries such as taxis and hotels, the entry of platforms has significantly
reduced incumbent revenues (Abraham et al. 2021; Zervas, Proserpio and Byers 2017).
Similar effects can even be observedwhen entering platforms competewith incumbents
only on one side of the market. For example, Craigslist’s entry led to a reduction in
circulation of newspapers with greater reliance on classified-ad revenues (Seamans and
Zhu 2014).

These patterns have fueled an active policy debate over whether and how to regulate
online peer-to-peer platforms. Even if taxes levied exclusively on platforms are arguably
among the main tools on the agenda, relatively few papers have studied their effects.7

Moreover, due to the lack of data covering actual policy changes, these studies consid-
ered the effects of taxing platforms only in counterfactual analyses, which required
them to impose strong assumptions. For example, Shapiro (2018) studies the equilib-
rium impact of introducing a tax on Uber drivers whenever they pick up a passenger in
Manhattan but assumes a tax pass-through rate of one. In the hotel industry, Farronato
and Fradkin (2022) simulate how the market would be affected if Airbnb hosts, who are
assumed to take prices as given, faced the same tax rate as hotels.8 In contrast, using
data covering the implementation of a tax on ride-sharing, I show that the tax affected
the price and number of ride-sharing trips, leading to pass-through rates above one.

The focus on taxis and ride-sharing is particularly relevant in light of the stringent
regulations characterizing the industry and the magnitude of the consequences of ride-
sharing emergence. In effect, taxi fares are regulated and taxi drivers need to purchase
a license (also known as medallion) in order to operate. By contrast, ride-sharing prices
are freely determined through algorithms and drivers can join the platform at negligible
costs.9 Thus, the entry of ride-sharing platforms generated large benefits for consumer
surplus via improved matching technology (Fréchette, Lizzeri and Salz 2019; Buchholz
2021) and surge pricing (Cohen et al. 2016; Castillo 2020) but, in some cities, it also

7Agrawal and Zhao (2023) develop and calibrate a model to study the general equilibrium effects of
taxing Uber, focusing on its relationship with public transit usage. Via simulations, they show that taxes
on Uber only mildly increase public transit usage but when Uber is subsidized as a last-mile provider,
transit increases more.

8Li and Srinivasan (2019) instead simulate a policy raising Airbnb’s operative cost by up to 130%, and
find that hotel profits increase as Airbnb’s host costs increase.

9The main costs of becoming an Uber or Lyft driver are hidden and include upgrading one’s auto
insurance andmeeting vehicle requirements. According to the data published by the Business Affairs and
Consumer Protection (BACP), in Chicago medallions were traded for prices as high as $390,000 in 2012.
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coincided with the increase in congestion (Li et al. 2022) and the collapse of the value
of medallions (Bagchi 2018).10 In this context, taxing ride-sharing provides a tool to
satisfy incumbents’ demands for more protection and potentially reduce congestion.
This paper shows how such interventionsmay have only a limited impact on incumbent
revenues and modest benefits in reducing congestion, while significantly increasing
prices for riders.11

The rest of the paper is organized as follows. Section 2 discusses the likely impacts
of a tax on platforms’ rides only. Section 3 describes the Chicago taxi and ride-sharing
industry and the structure of the tax studied, whereas Section 4 describes the data.
Section 5 presents the empirical strategy. The effects of the tax on prices, number
of pickups and congestion are discussed in Section 6 and a conclusion is offered in
Section 7.

2. Conceptual Framework

This section outlines the key economicmechanisms throughwhich a tax on ride-sharing
is likely to impact equilibrium prices and pickups in the taxi and ride-sharing industry,
and discusses potential implications for congestion.

Standard tax incidence analysis suggests that pass-through rates depend on the rela-
tive elasticities of demand and supply. In competitive markets with constant marginal
costs, taxes are typically fully passed through to consumers, while increasing marginal
costs imply pass-through rates below one (Kotlikoff and Summers 1987; Fullerton and
Metcalf 2002). In contrast, with imperfect competition, pass-through may be greater
or less than one depending on the nature of competition and the shape of demand.12

However, under common assumptions on demand and conduct—such as log-concave
demand and Cournot competition between symmetric firms—overshifting is rare with-
out extremely inelastic supply or demand (Weyl and Fabinger 2013).13

Since ride-sharing companies are peer-to-peer marketplaces, indirect network ef-
fects between drivers and riders may affect pass-through rates (Belleflamme and Toule-

10The crisis of the taxi industry in the US has received particular attention due to the
financial difficulties of the drivers who had invested in the industry. See, for example,
https://www.nytimes.com/2019/05/19/nyregion/taxi-medallions.html for an article about the NYC market.

11Additionally, taxes like the one implemented in Chicago can have substantial heterogeneous effects
across different neighborhoods and times leading to potentially large distributional costs (Leccese 2024).

12See Katz and Rosen (1985); Stern (1987); Besley (1989); Delipalla and Keen (1992); Hamilton (1999);
Anderson, Palma and Kreider (2001) for analytical models studying pass-through in oligopoly markets.

13Miklós-Thal and Shaffer (2021) refine the analysis in Weyl and Fabinger (2013), showing that their
pass-through and incidence formulas are only valid for infinitesimal changes or linear demand.
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monde 2018). In particular, since drivers adjust their labor supply in response to changes
in earnings (Hall, Horton and Knoepfle 2021), the reduction in demand following a tax
levied on riders reduces drivers’ willingness to work for the platforms, and hence the
aggregate supply of rides.14 This, in turn, further increases the equilibrium price. Thus,
in a two-sided market, the presence of indirect network effects inflates pass-through
rates, making it easier to rationalize tax overshifting than it would be in a conventional
one-sided firm analysis.

To formalize this intuition, suppose that ride-sharing companies only offer one type
of service and consider a simple setting with D( p) being a downward-sloping demand
function at price p. The supply side is composed of a pool of N drivers, who at the
beginning of each day decide whether to enter the market and work for the platform.
I assume that drivers are heterogeneous with respect to their outside optionω (ω ∼
U[0, ω̄]), and decide whether to be on the market by comparing their outside option
with the expected earnings from entering, e = (1 – ν) · p · QL , where Q is the equilibrium
number of rides, L ≤ N is the number of drivers who enter the market, and ν ∈ (0, 1) is
the fee charged by the platform on each ride. Let hi( p) be the upward-sloping individual
labor supply of driver i (in hours) once the entry decision has been taken. I assume that,
conditional on entering, drivers are homogeneous in their individual labor supply (i.e.,
hi( p) = h( p) ∀i), and that the platform converts labor into number of rides offered at a
service rate σ(L), with σ′(·) ≥ 0. Then, the aggregate supply of rides can be written as
S( p,L) = L · σ(L) · h( p).

Figure 1A illustrates an example of the effect of a tax on ride-sharing in the setting
above where only one type of ride-sharing trip is offered, assuming linear demand
and supply.15 The initial equilibrium is at point A. As the tax is levied on consumers, it
prompts an inward parallel shift in total demand for ride-sharing. Thus, at B, the price
paid by riders increases to pB, while the price earned by drivers falls to pB,dr. This
would be the new equilibrium in a traditional one-sided analysis, with a pass-through
rate lower than one. However, in the ride-sharing market, the decrease in the price
drivers receive and in the number of rides reduces drivers’ earnings, which in turn

14The link between the number of drivers and the aggregate supply of rides is also explored in Castillo,
Knoepfle and Weyl (2022), who develop a model in which any change in the number of ride-sharing
drivers in the market—which is a function of their expected earnings—shifts the aggregate supply of
rides. However, their focus is on showing how ride-sharing markets are prone to a matching failure when
demand is high relative to supply.

15Appendix A characterizes the post-tax equilibrium for the model with linear demand and supply,
derivingnecessary and sufficient conditions for a pass-through rate above 1. In addition, TableA.1 presents
the values of model parameters and variables that would generate an effect similar to that in Figure 1A.
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reduces L pivoting the supply curve. The final equilibrium in the example is at point
C, where drivers receive a price higher than before the tax ( pC,dr > pA), and the pass-
through rate is greater than one.

FIGURE 1. Effect of the tax on market equilibrium

A. Ride-sharing (Taxed) B. Taxis (Untaxed)

Notes: Figure A represents the impact of a tax on ride-sharing on demand and supply of ride-sharing
assuming that only one service is offered by the platform. Figure B illustrates the potential effect of the
same tax on the taxi market. Taxi prices do not change as they are regulated.

Another factor that may influence the impact of taxing ride-sharing platforms is
that they generally offer two potentially competing services: single and shared rides.
If the cross-price elasticity of substitution between these services is sufficiently high,
substitution across products can amplify the effect of a tax levied on both services. A
price increase in one service affects demand for the other, and if the platform inter-
nalizes this relationship in its pricing strategy, it may raise prices on both. In the pres-
ence of tax asymmetry within taxed services—as in my empirical context, where single
rides face a higher surcharge than shared ones—demand will also shift toward the less
heavily taxed option. Because shared rides generally account for a smaller share of the
market, the net effect is likely to be a reduction in total ride-sharing demand and an
increase in prices for both services.16

Since demand for ride-sharing and taxis may partially overlap, a larger increase in
the price of ride-sharing can lead to a greater shift in demand toward traditional cabs.

16See Section A.1 in the appendix for a discussion of how competing services offered by platforms
influence market outcomes.
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Figure 1B illustrates the change in equilibrium in the taxi market, where D̃( p̃) and S̃( p̃)
represent downward-sloping demand and upward-sloping supply, respectively. Fare
regulation implies that taxi prices are fixed at p̃reg.17 By raising ride-sharing prices, the
tax shifts demand outward in the taxi market, increasing the equilibrium number of
taxi rides from Q̃A to Q̃C. The degree of substitutability between ride-sharing and taxis
determines the size of this shift. If the cross-price elasticity of demand is sufficiently
high, the tax will steer riders toward traditional cabs, reallocating both ridership and
revenues away from ride-sharing platforms.

While the number of taxi and shared ride-sharing trips may increase in response to
a tax that imposes a higher surcharge on single rides than on shared ones, and exempts
taxis altogether, their smaller share relative to single ride-sharing trips suggests that
the overall number of rides is likely to decline. This contraction in overall volume,
combined with the fact that substitution from single to shared rides may reduce the
number of vehicles on the road, could reduce congestion. However, the magnitude
of this effect ultimately depends on the choices of riders who substitute away from
ride-sharing: if a sufficient share shifts to non-car alternatives (e.g., public transit or
walking), congestion may decrease; if instead a substantial share switches to private
vehicles, the net effect could be limited or even adverse.18

In practice, additional factors beyond those discussed above, and not considered in
my stylized framework, may shape the post-tax equilibrium. Differences in the shape
of demand for single and shared rides can influence how prices and quantities adjust
across services. For example, shared-ride users tend to be more price-sensitive, as they
place a lower value on reduced waiting times (Alonso-González et al. 2021), potentially
limiting price increases for that service. Spatial variation in demand density may also
affect substitution patterns: in denser areas such as downtown, pooling is more feasible
and taxis are more accessible, making substitution away from single ride-sharing more
attractive (Shapiro 2018). Moreover, platforms may be able to strategically choose not
only the price charged to riders, but also the effective wage paid to drivers.19 Finally, tax
overshifting may also reflect other strategic considerations. For example, by passing

17I assume that p̃reg is above the market-clearing price and that sufficient taxi licenses are available
to accommodate the increase in demand. This assumption is supported by the decline in demand and
revenues experienced by taxi owners in the U.S. after the entry of ride-sharing (Bagchi 2018).

18Almagro et al. (2024) show that road pricing can reduce congestion and environmental externalities
but may also reduce traveler surplus if not accompanied by complementary transit investments.

19For example, this could happen by changing the commission fee, or through bonuses, promotions,
and other incentives. Moreover, tipping can further complicate the mapping between rider payments
and driver compensation.
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through more than 100% of the tax, platforms can highlight to regulators that new
surcharges directly burden riders, a signaling motive that goes beyond local profit
maximization.20

In sum, targeted taxes on ride-sharing platforms can result in particularly large
increases in prices, with pass-through rates potentially exceeding 100%. These policies
may also reshape demand across services within the platform and reallocate market
shares toward taxis. The magnitude of these effects, and whether such interventions
meaningfully reduce congestion, is ultimately an empirical question, which I examine
in the remainder of the paper.

3. Institutional Background

The taxicab industry is a critical component of the transportation infrastructure in large
urban areas, generating about $31 billion in annual revenues in the US. Chicago is the
third largest market in the US, after New York City and Los Angeles. In Chicago, the use
of ride-sharing companies, also called Transportation Network Providers (TNPs), grew
by 271% between 2015 and 2018—according to a report produced in 2019 by the Business
Affairs and Consumer Protection of Chicago (henceforth, the 2019 BACP Report)—and
this has substantially shrunk taxi drivers’ earnings.21

Uber was the first TNP to enter the market, and in April 2013 allowed drivers to use
their personal vehicles as part of UberX.22 Lyft entered the Chicago market later in 2013.
From that moment, the annual growth rate of taxi pickups experienced a slowdown,
until it became negative in 2015. Between 2018 and 2020, Uber and Lyft offered two types
of services: single rides and shared rides. Shared rides involved multiple passengers
making separate bookings and being picked up along the same route. During this period,
Via, a platform dedicated solely to shared rides, was also operating in Chicago alongside
Uber andLyft.Data by SecondMeasure,which tracks credit card expenditures, estimates
that in November 2019 Uber commanded a roughly 72%market share in Chicago, while

20For instance, Uber and Lyft’s decision to exit Austin in 2016 following the introduction of finger-
printing requirements illustrates that platform responses to regulation are shaped not only by short-run
market incentives but also by broader strategic objectives. See the article available at: https://www.cnbc.
com/2016/08/18/what-happened-in-austin-after-uber-and-lyft-got-up-and-left.html.

21The 2019 BACP Report “Transportation Network Providers and Congestion in the City of Chicago”
is available at: https://www.chicago.gov/content/dam/city/depts/bacp/Outreach%20and%20Education/
MLL_10-18-19_PR-TNP_Congestion_Report.pdf, accessed on 2/26/2024.

22Before April 2013 Uber offered only expensive cars (limos, UberBlack) and thus was not able to really
compete with taxis.
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Via had only a 1%market share.23

TABLE 1. Structure of the tax

Type of ride Tax amount Tax amount Tax
before January 6, 2020 after January 6, 2020 increment

Downtown:

Single TNP trip $0.72 $3.00 +$2.28

Shared TNP trip $0.72 $1.25 +$0.53

Taxi trip $0.00 $0.00 $0.00

Non-downtown:

Single TNP trip $0.72 $1.25 +$0.53

Shared TNP trip $0.72 $0.65 -$0.07

Taxi trip $0.00 $0.00 $0.00

Notes: The amounts refer to the tax paid by the provider to the City of Chicago for each trip completed.
The table summarizes the amounts charged on different types of trips happening during peak times,
defined as weekdays (Mondays, Tuesdays, Wednesdays, Thursdays, and Fridays) between 6 am and 10 pm.

Against this background, the City of Chicago in the 2019 BACP Report identified
the entry of TNPs as the main reason for an increase in congestion. Therefore, with
the explicit twofold purpose of reducing congestion and raising money to reduce the
budget deficit, beginning on January 6, 2020, the city of Chicago implemented a new tax
targeting trips completed by TNPs. Although one of the stated objectives was to reduce
congestion, the tax did not affect traditional taxis or other private vehicles.

The structure of the tax is summarized in Table 1.24 Before January 6, 2020, each trip
supplied by a TNP was subject to a flat tax of $0.72, whereas no tax was imposed on taxi
trips. The new tax schedule levied different amounts based on the type of ride (single
or shared) and its geographical endpoints, distinguishing downtown rides from all the
others. Downtown trips are those starting or ending (or both) within the area of Chicago
downtown depicted in Figure 2. This definition implies that, for example, a trip starting
in a peripheral neighborhood and ending in the downtown area would be defined as a
downtown trip as much as a trip that happens entirely within the downtown zone.

23See https://www.reuters.com/article/uber-pricing-chicago-idUSL8N2816E8.
24Table 1 summarizes the tax applied to trips happening during weekdays between 6 am and 10 pm,

which are the focus of my analyses. The tax also affected trips happening in other times or during
weekends, as summarized in Table C.4 in the Appendix.
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FIGURE 2. The Downtown zone

Source: City of Chicago. Notes: The figure depicts the downtown zone as defined by the City of Chicago in
the new tax implemented starting on January 6, 2020.

As shown in Table 1, downtown rides experienced substantial tax increases: the tax
on single rides rose to $3.00, marking a $2.28 increase from the previous flat fee of $0.72,
while the tax on shared rides increased by $0.53 to $1.25. For non-downtown rides, the tax
for single trips was raised to $1.25, whereas the tax on shared trips was reduced by $0.07,
bringing it down to $0.65. This new tax schedule resulted inChicago imposing thehighest
surcharge on TNPs in the United States. Notably, the policy did not impact taxi trips.

Many cities have used congestion pricing to tackle traffic. For example, in February
2019, to reduce congestion in Manhattan, NYC imposed a surcharge for trips that begin
in, end in, or pass throughManhattan south of and excluding 96th Street (an area known
as the congestion zone).25 The surcharge was $2.75 for each single trip of TNPs, $0.75
per shared trip, and $2.50 per taxi trip. Although the NYC tax scheme varies between
taxicabs and TNPs, this difference is very small in magnitude compared to that imposed
by the Chicago tax, thus making the two interventions substantially different in their
potential to affect competition in the market. Whether this additional effect was desired

25Other cities, such as London and Stockholm, have implemented congestion pricing policies, although
these surcharges also affect private vehicles.
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or not by the policymaker, the tax implemented in Chicago provides a unique quasi-
experiment to study the effects of a targeted tax schedule on the competition between
traditional taxis and ride-sharing.

4. Data

I use three different datasets. Below, I first describe each dataset and explain how I
construct the sample. Then, I present descriptive analyses of the impact of the policy
on TNPs’ price-setting behavior.

4.1. Sources and Sample Construction

I combine data from two public sources: the City of Chicago Data Portal, which regu-
larly provides detailed information on taxi and TNP trips, and the National Weather Ser-
vice Forecast Office, which publishes data on the weather in Chicago over time. From
the latter source, I use daily information on precipitation, wind speed, snowfall, and
temperature.

The dataset for TNPs includes information on every trip since November 2018. Each
observation includes the date, time, price, and endpoints of the ride, as well as other
information including length (in miles), duration (in seconds), tolls, taxes, tip, and an
identifier for whether the ride was shared (i.e., two or more riders booked separately
and shared the ride).26However, the dataset does not specify the company that provided
the ride and does not provide a driver identifier. Regarding the geographical endpoints
of each ride, the data identifies the community area (CA) in which any trip started and
ended. The city of Chicago is divided into 77 CAs. The areas’ borders remained constant
over the period I considered in the analyses, which allows me to compare results over
time. The dataset on taxis includes information on every trip since 2013: miles, duration
(in seconds), price, tip, driver identifier, pick-up and drop-off date, time, and location
(expressed by the CA).

Given the structure of the tax, I focus onweekday trips starting after 6 am and ending
before 10 pm.27 This enables me to define four types of TNP rides: (i) downtown single
rides, which are single TNP rides starting or ending within the downtown zone depicted

26For example, if passenger W is picked up in location A and dropped off in location B, and at some
point during the trip passenger Z is picked up in location C and dropped off in location D, this would
appear in the data as two separate observations with a shared ride flag on each record.

27I use weekdays’ off-peak times only to construct ameasure of congestion, as described in Section 6.3.

12



in Figure 2; (ii) downtown shared rides, which are shared TNP rides starting or ending
within the downtown zone; (iii) other single rides, which are single TNP rides starting
and ending outside the downtown zone; (iv) other shared rides, which are shared TNP
rides starting and ending outside the downtown zone. Each of these types of rides faced
the same flat tax of $0.72 before January 6, 2020, whereas afterward they started facing
different surcharges. In particular, the tax on downtown single (shared) rides became $3
($1.25), whereas that on all the other single (shared) rides became $1.25 ($0.65). Similarly,
I distinguish downtown taxi rides from all other taxi rides. These rides were not affected
by the tax.

To identify downtown trips, I leverage information provided in my data about the
CA wherein each trip starts and ends. The downtown zone entirely includes the central
business district of Chicago (the Loop) but also partially includes two CAs, i.e., the Near
North Side and the Near West Side, which I refer to as “border areas.” This implies
that with my data, it is not possible to exactly identify the tax increment faced by trips
originating or ending in a border area but with no endpoint inside the Loop. I refer
to these rides as “border trips.” Therefore, when studying the tax pass-through and its
impact on taxi and ride-sharing pickups, I exclude border trips frommy main analyses
and conservatively identify the downtown zonewith the Loop.28 Nonetheless, due to the
high volume of border trips, Appendix D provides a separate examination of the effects
of the tax on the price and number of these specific rides. Additionally, I drop trips with
a price above $200 and duration above two hours, which, however, only account for less
than 0.01% of the rides.

For each type of ride, I construct a dataset where an observation is a route at a
given hour (between 6 am and 10 pm) on a certain day, and a route is defined as the
pair of CAs characterizing the origin and destination of a ride. Thus, an example of
an observation in my dataset would be the price of a ride from Douglas—which is one
of the 77 CAs of Chicago—to the Loop (downtown) between 3 and 4 pm on a given
day. Furthermore, I consider two subsamples, which I refer to as “Sample 18-19” and
“Sample 19-20,” and I define two focal dates, one for each subsample. The focal dates
are: (i) for Sample 19-20, Monday, January 6, 2020, which is when the tax began; and
(ii) for Sample 18-19, Monday, January 7, 2019, which is the corresponding Monday in
the year before the implementation of the tax. Each subsample is constituted by the
nine weeks (Monday to Friday) before and the seven weeks after its respective focal

28When investigating the tax’s impact on congestion, I will incorporate border trips into the primary
analyses. This decision is motivated by the policy goal of reducing congestion in border areas.
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TABLE 2. Summary statistics

Sample 18-19, pre 01/07 Sample 18-19, post 01/07 Sample 19-20, pre 01/06 Sample 19-20, post 01/06

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
VARIABLES N mean sd N mean sd N mean sd N mean sd

Panel A: Downtown Single TNP

Number of pickups 19,107 42.46 124.4 42,713 38.01 112.3 20,566 47.86 140.2 45,314 39.95 115.6
Trip miles 19,107 8.761 4.099 42,713 8.772 4.130 20,566 9.017 4.134 45,314 8.967 4.113
Trip price ($) 19,107 19.46 6.946 42,713 19.11 6.806 20,566 19.25 6.570 45,314 20.61 6.415
Trip minutes 19,107 25.70 11.14 42,713 24.44 10.57 20,566 26.17 11.15 45,314 24.08 10.04
Trip speed (mph) 19,107 20.63 6.985 42,713 21.78 28.69 20,566 20.93 7.100 45,314 22.42 7.296

Panel B: Other Single TNP

Number of pickups 219,551 4.678 13.91 504,653 4.825 14.31 268,422 5.095 14.74 588,536 5.020 14.98
Trip miles 219,551 6.616 5.382 504,653 6.658 5.412 268,422 7.046 5.586 588,536 7.037 5.580
Trip price ($) 219,551 16.17 9.002 504,653 16.10 8.801 268,422 16.48 8.545 588,536 16.87 8.525
Trip minutes 219,551 20.40 12.90 504,653 19.87 12.18 268,422 21.26 13.06 588,536 20.06 11.83
Trip speed (mph) 219,550 18.52 23.31 504,653 18.97 17.23 268,421 18.89 7.122 588,536 19.77 7.703

Panel C: Downtown Shared TNP

Number of pickups 17,856 12.84 28.54 39,677 11.83 26.05 15,139 6.469 12.29 34,649 7.160 14.55
Trip miles 17,856 8.985 4.189 39,677 9.110 4.244 15,139 10.49 5.350 34,649 10.45 4.975
Trip price ($) 17,856 11.68 5.285 39,677 11.69 5.207 15,139 12.79 5.178 34,649 13.37 5.207
Trip minutes 17,856 31.12 12.88 39,677 29.91 12.33 15,139 30.19 13.25 34,649 27.81 11.95
Trip speed (mph) 17,856 17.41 5.727 39,677 18.32 5.920 15,139 21.60 9.613 34,649 23.35 9.692

Panel D: Other Shared TNP

Number of pickups 207,529 2.865 4.806 475,146 2.887 4.771 164,442 1.996 2.232 381,986 2.063 2.363
Trip miles 207,529 6.571 4.970 475,146 6.863 5.157 164,442 7.766 6.212 381,986 7.704 5.921
Trip price ($) 207,529 10.91 5.958 475,146 11.02 5.905 164,442 11.88 5.783 381,986 11.96 5.926
Trip minutes 207,529 22.82 14.93 475,146 23.17 14.80 164,442 22.19 15.12 381,986 21.01 13.86
Trip speed (mph) 207,529 16.86 5.409 475,144 17.41 27.04 164,439 21.61 57.43 381,984 22.51 40.56

Panel E: Downtown Taxi

Number of pickups 9,373 56.12 151.0 20,072 45.74 124.3 9,738 44.60 120.0 20,603 38.51 105.1
Trip miles 9,373 6.065 4.457 20,072 5.986 4.425 9,738 6.097 4.510 20,603 5.855 4.488
Trip price ($) 9,373 22.30 56.99 20,072 22.51 67.40 9,738 26.05 121.7 20,603 25.78 138.5
Trip minutes 9,373 21.36 12.00 20,072 20.48 11.42 9,738 22.47 12.21 20,603 20.83 11.42
Trip speed (mph) 9,351 16.53 8.469 20,031 17.80 116.5 9,733 16.28 30.73 20,593 16.77 55.29

Panel F: Other Taxi

Number of pickups 39,175 2.751 4.592 85,501 2.467 3.547 42,525 2.501 4.047 91,126 2.223 3.158
Trip miles 39,175 5.526 6.166 85,501 5.383 6.167 42,525 5.550 6.242 91,126 5.250 6.110
Trip price ($) 39,175 20.96 49.12 85,501 20.99 68.66 42,525 22.23 72.16 91,126 21.62 83.50
Trip minutes 39,175 19.86 16.32 85,501 18.78 15.25 42,525 21.20 16.60 91,126 19.49 15.05
Trip speed (mph) 38,368 21.34 296.1 83,619 18.22 167.4 41,461 14.08 11.91 88,613 14.42 15.41

Notes: The table presents summary statistics for each route-hour-date in which at least a trip occurred in
Sample 18-19 or Sample 19-20. Each panel refers to one of the six different types of rides considered.

date. This implies that observations between 11/5/2018 and 2/22/2019 belong to Sample
18-19, whereas observations between 11/4/2019 and 2/21/2020 belong to Sample 19-20.

As detailed in Section 5, my strategy for the identification of the effect of the tax on
market outcomes will rely on comparing the change implied by the tax after January
6, 2020 in Sample 19-20 to that occurred in Sample 18-19 after January 7, 2019. To make
the two subsamples comparable and aligned, I drop the week of Thanksgiving 2018
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and that of Thanksgiving 2019 as well as the the one following Thanksgiving 2018 and
that preceding Thanksgiving 2019 because Thanksgiving happened in different weeks
of November in the two subsamples. Furthermore, I also exclude the weeks including
Christmas 2018 and Christmas 2019 because they tend to be characterized by unusual
riding patterns. In the Appendix, I discuss the robustness of my results to including also
these weeks in my final sample. Therefore, eventually, I consider for each subsample
six weeks before and seven weeks after its focal date. The choice regarding the number
of weeks to include in a subsample is constrained by the fact that TNP data are only
available starting in November 2018 and by the need to limit data contamination due to
the COVID-19 crisis. Appendix B provides a detailed discussion and supporting evidence
showing that excluding observations after February 21, 2020, helps mitigate concerns
about sample contamination from COVID-19.

Table 2 displays summary statistics for my final sample. Each panel refers to a
different type of ride and shows information about the key variables I consider in
my analyses, splitting each subsample into the parts before and after its focal date.
Specifically, every panel displays the average number of trips, the average price of a
ride, the average length (in miles), the average duration (in minutes) and the average
speed (in mph) per route-hour in which at least a trip occurred on a given day.

4.2. Descriptive Evidence

Providing suggestive evidence about the change in ride-sharing prices around the tax
implementation date is a necessary first step in my analysis. Figure 3 illustrates how
weekly average prices (in $ per ride) for different types of rides changed over weeks
within Sample 18-19 and Sample 19-20. In all figures period 0 on the x-axis corresponds
to the week starting on January 6, 2020 or January 7, 2019. All figures display substantial
variation in price levels across weeks, but this variation is fairly similar across the two
subsamples before period 0. This is also consistent with the absence of any response of
TNP prices to the announcement of the tax on October 19, 2019.

Figure 3A shows that for single downtown rides, i.e. those for which the tax incre-
ment was the largest ($2.28), TNPs did not absorb the increase in the tax by reducing
base fares (i.e., final prices net of taxes), implying a substantial lasting level increase in
the final price paid by passengers. The comparison with the pattern of prices in the
year before the tax implementation is consistent with the observed price changes not
being entirely explained by seasonal effects. Figure 3B and 3C suggest a similar pattern
for the price of non-downtown single and downtown shared rides, which both faced a
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FIGURE 3. Change in TNP prices

A. Downtown single rides B. Other single rides

C. Downtown shared rides D. Other shared rides

Notes: Each figure plots weekly average prices (in $ per ride) for different types of rides changed against
the weeks since period 0, which corresponds to the week starting on January 6, 2020 or January 7, 2019.

$0.53 tax increment in period 0.
Instead, for all the other shared rides, for which the tax fell by $0.07, Figure 3D

displays a different pattern. In Sample 18-19, prices slightly decreased right after period
0 before increasing again in the following weeks. The drop in price in period 0 was
substantially larger for Sample 19-20 relative to Sample 18-19. Nevertheless, afterward
in Sample 19-20, prices steadily increased (until period 5) reaching levels higher than
those prevailing before the tax was implemented. The magnitude of such an increase
appears to be larger than the one displayed in Sample 18-19.

Lastly, except for downtown single rides, price levels are lower in Sample 18-19, even
before period 0. This is consistent with the expansion and increase in prices over time
of ride-sharing services, particularly shared ones.
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5. Empirical Strategy

This section describes the main empirical design I adopt to identify the effect of the tax
on prices, pickups and congestion.

My identification strategy exploits the exogenous variation provided by the imple-
mentation of the tax on January 6, 2020 to study the change in the outcomes of interest.
However, a simplistic before and after comparison would lead to biased estimates of
the impact of the tax because the policy started on the first Monday after a period of
holidays, during which activities normally slow down.29 To see this, consider for exam-
ple Figure 3A. The average price of TNP single rides is subject to substantial seasonal
variation, and prices tend to be lower at the end of the year (period -1 in the figure) to
increase after period 0. This implies that, if I did not control for this seasonality, I could
overestimate the causal impact of the tax on downtown TNP single rides. Moreover, a
two-step procedure that first seasonally adjusts the data using several years of observa-
tions is not feasible in this setting as the City of Chicago started to collect data on TNP
trips only in November 2018. Thus, to isolate the effect of the tax, I use a difference-in-
differences (DiD) design and compare the change in the outcome variables after the tax
implementation date (i.e., January 6, 2020) with the one that occurred after a hypotheti-
cal tax implementation date, which is defined as the first Monday after the same period
of holidays in the previous year (i.e., January 7, 2019).30 In other words, I pool together
Sample 18-19 and Sample 19-20 and use the former as a control group.

The unit of analysis is a route i at hour h on date j in period t. For an observation
belonging to Sample 19-20 (Sample 18-19), a period is defined as the number of days since
January 6, 2020 (January 7, 2019). For example, t = –1 for January 3, 2020 and January 4,
2019—which are the weekdays immediately before January 6, 2020 and January 7, 2019,
respectively—and t = 1 for January 7, 2020 and January 8, 2019. Note that by construction
t = 0 for January 6, 2020 and January 7, 2019. In this way, for each period t, one can
interpret observations belonging to Sample 19-20 as the treatment group, whereas
those belonging to Sample 18-19 constitute the control group. Thus, I estimate several

29For example, using a local approach around the tax implementation date such as the Regression
Discontinuity in Time design (e.g., Anderson (2014)), which is a regression discontinuity design that uses
time as the running variable, would be subject to this concern.

30In their analysis of patients’ response to dynamic incentives in health insurance contracts with
deductible, Klein, Salm and Upadhyay (2022) build on a similar intuition to control for seasonality in
healthcare needs.
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equations of the following form:

yi,h, j ,t =β0 + β1 · Sample1920i,h, j + β2 ·
(
Sample1920i,h, j × Postt

)
+

+ β3 · Xi,h, j ,t + αi + αh + αt + εi,h, j ,t
(1)

where yi,h, j ,t is the outcome variable—e.g., the logarithm of the price of a ride—in route
i at hour h of date j in period t; Sample1920 is a dummy equal to onewhen the route-hour
refers to a calendar date in Sample 19-20; Post equals one for observations in period 0 or
later, i.e., Postt = 1{t ≥ 0};31 β2 is the main coefficient of interest, capturing the effect of
the tax on the outcome variable; X includes weather controls for each calendar date
in Chicago, and, in some specifications, also controls for the average trip distance; αi,
αh and αt are route, hour and period fixed effects, respectively. These allow to control
for any time-invariant route-, hour- or period-specific factors that might confound β2.
For example, any other (time-invariant) distance-related determinant of y not captured
by the linear control for distance included in X is absorbed by αi. Moreover, standard
errors are two-way clustered by date and route to account for within-day shocks and
serial correlation within routes.32 Overall, this approach allows me to control for the
seasonal variation at the tax implementation date and interpret β2 as the effect of the
tax, on top of whatever is generated by seasonal variations.

The empirical strategy outlined above hinges on the assumption that seasonality has
on average the same effect across years, and Sample 18-19 can serve as a counterfactual
for what would have happened to the outcomes considered absent the tax.33 Testing
the validity of this assumption entails verifying that the parallel-trend assumption
is satisfied. To that end, I use an event study through which I test whether there are
statistically significant differences in the outcomes across Sample 18-19 and Sample 19-
20 in each of the weeks before the focal dates (i.e., before period 0).34 The event study

31In other words, Postt equals one for observations in Sample 19-20 and after January 6, 2020 or for
observations in Sample 18-19 and after January 7, 2019.

32The main results remain robust to clustering at alternative levels.
33In principle, trips occurring during off-peak times (i.e., weekends or nighttime) were also candidate

control groups to identify the effect of the tax. However, due to the structure of the tax, this approach
would not allow me to determine the impact of the tax on non-downtown rides, similar to the challenge
that would arise using non-downtown rides as a control for downtown trips. Additionally, I verified that
off-peak time rides exhibit distinct riding patterns, further indicating their unsuitability as control groups.

34In practice, I take the week right before the focal date in each subsample (i.e., period -1) as the bench-
mark and replace β2 ·

(
Sample1920i,h, j × Postt

)
in Equation 1 with

∑
k ̸=–1 γk ·

(
Sample1920i,h, j × Dk,t

)
,

where k ∈ {–6, ..., 6} and Dk,t equals one if period t falls in the kth week around period 0. The details of
this specification are discussed in Appendix B.
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also allows me to analyze differences between Sample 18-19 and Sample 19-20 in each of
the seven weeks after the tax was implemented, thereby assessing its dynamic effects.
This is particularly interesting when examining how the pricing algorithm of TNPs
reacts to the tax.

I conduct three additional sets of robustness checks, which I describe in detail in
Appendix B. First, I assess the robustness ofmyfindings to different sample construction
procedures. Second, I examine the effects of the tax on additional price metrics and
alternative measures of congestion to further test the robustness of the findings. Third,
Figure 3 points to a potential concern regarding the non-stationarity of ride-sharing
prices over the study period.While the event study design already tackles this concern, I
further validatemy approach by augmenting Equation 1 with a linear trend representing
calendar weeks.

6. The Effects of the Tax

This section studies the impact of the tax on the taxi and ride-sharing industry. First, I
describe how the tax affected the price of ride-sharing and taxis for different types of
rides, estimating the tax pass-through rate. Next, I examine the effects on the number of
pickups completed by TNPs and taxis. Finally, I study the impact of the tax on congestion
across different areas of Chicago.

6.1. Change in Prices and Tax Pass-Through

I begin by investigating how TNPs responded to the tax. I do so by estimating Equation 1
using as dependent variable the price (in logs) of the four types of rides considered:
downtown single rides, which in my final sample faced a $2.28 tax increment, other
single rides and downtown shared rides, which both faced a $0.53 tax increment, and
other shared rides, for which the tax decreased by $0.07.

The first two rows of Table 3 report the estimates of β1 and β2 obtained through
these regressions. In the downtown market, column (1) shows that the prices of single
rides in Sample 19-20 are 4.40% lower but the tax led to a large (and significant at 5%
level) increase by 12.29%. For a ride of this kind, this implies an increase in the average
price from about $19.20 to roughly $21.50. Column (3) shows that the tax increased prices
for shared rides by approximately 5.65%, translating to an average fare increase of about
$0.72.
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For what concerns non-downtown rides, namely those starting and ending outside
the downtown area, column (2) shows that the price of single rides increased by 3.25%.
Although smaller than for downtown single rides, this represents an important change
in the market, implying an average raise in the level of these prices by more than $0.53.
Column (4) shows that even if the tax on shared trips went down, the price increased by
1.82%, corresponding to a growth of about $0.22 per trip, on average.35

TABLE 3. The effect of the tax on TNP prices

(1) (2) (3) (4)
Single Single Shared Shared

downtown other downtown other

Sample1920 -0.045*** 0.005 -0.023 0.027***
( 0.014) ( 0.005) ( 0.029) ( 0.007)

Sample1920× Post 0.116*** 0.032*** 0.055*** 0.018***
( 0.006) ( 0.003) ( 0.008) ( 0.005)

Observations 127,700 1,581,150 107,321 1,229,076
Adj. R-sq 0.910 0.908 0.731 0.715

Route FE ✓ ✓ ✓ ✓
Hour FE ✓ ✓ ✓ ✓
Period FE ✓ ✓ ✓ ✓

Notes: *** p<0.01, ** p<0.05, * p<0.1. Each column describes the effect of the tax on the price (in logs)
of different types of TNP rides (columns 1 to 4) or taxi rides (columns 5 and 6). All regressions include
controls for weather and the distance of the trip (in miles). Standard errors are two-way clustered at the
route-date level and reported in parentheses.

While the regressions control for average trip distance, I also verify that the tax did
not induce meaningful changes in this dimension of trip composition. Table C.2 in the
Appendix shows that the average distance of TNP rides remained largely stable after
the tax. Even when differences are statistically significant in some specifications, their
magnitudes are very small, suggesting that compositional shifts are unlikely to explain

35Appendix B shows that the results in Table 3 are robust to the retention in the sample of all weeks
dropped in the final sample and to the addition of a linear trend for the calendar week in Equation 1 that
accounts for the non-stationarity of ride-sharing prices over the study period. Moreover, Columns (1)
and (2) of Table D.2 show that results for trips starting or ending in the border area are in line with those
of Table 3.
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the observed price effects. These findings support the interpretation that the observed
price patterns are not primarily driven by changes in the types of trips taken.36,37

Typically, the pass-through rate of a tax can be calculated by dividing the price
change due to the tax by the tax increment (Weyl and Fabinger 2013). However, in the
context of ride-sharing, ridersmay substitute single rides for shared ones based on their
relative prices. To account for the asymmetry in the Chicago tax schedule, I estimate
the average pass-through rate for each market (downtown and non-downtown) as:

(2)
q single0 ∆P single + q shared0 ∆P shared

q single0 ∆τ single + q shared0 ∆τ shared
,

where ∆Pk represents the change in the level for ride type k = {single, shared}, ∆τk

is the corresponding tax increment, and qk0 is the average number of daily rides of
type k before the tax. Moreover, given the estimates β̂k2 of β2 reported in Table 3 and
the average price (in $) of a given type of ride before the tax p0, ∆Pk is computed as[
exp(β̂k2) – 1

]
· pk0. Standard errors are obtained by estimating a pooled regression, alge-

braically equivalent to Equation 1, for each market and then applying the delta method.
A bootstrap procedure that re-estimates separate regressions for single and shared
rides in each market yields similar results.38 The point estimates suggest overshifting
of the tax, with average pass-through of 104% in the downtown market and 124% out-
side downtown. The corresponding 95% confidence intervals ([0.93, 1.16] downtown;
[0.99, 1.49] outside) indicate that riders essentially bore the full burden of the tax, and
possibly more—particularly outside downtown. The relatively lower pass-through rate
downtown is consistent with heterogeneity in demand elasticities across geographic
markets, as the ease of accessing alternative transportation options may vary depend-
ing on whether one endpoint of the trip is the downtown zone. For instance, public
transit is often more convenient when one endpoint is downtown, which could make
demand for downtown single rides more elastic and thereby reduce pass-through.

To illustrate the gap between my empirical findings and a standard benchmark, I
36Consistently, the top panel of Table B.4 shows results that align with Table 3 when using price per

mile as the dependent variable.
37Although the tax did not apply to traditional taxis and their fares are regulated, changes in trip

composition could still indirectly affect the average price of a taxi ride. However, Table C.2 shows no
substantial changes in average taxi trip distance, and Table C.1 confirms that changes in taxi prices are
either statistically insignificant or, when significant, economically minor (below 1%).

38Since for non-downtown shared rides the tax was reduced, I also verify that this is not driving the
high pass-through by repeating the analysis under the assumption that there was no tax change for
shared trips outside downtown.
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provide a back-of-the-envelope calculation of the pass-through rate ρ in a perfectly
competitive setting, using the formula ρ = 1

1+(εD/εS)
(Weyl and Fabinger 2013), where

εD ≡ –
(
D′ P

Q

)
and εS ≡ S′ PQ denote the price elasticities of demand and supply, respec-

tively. Drawing on estimates from the literature—demand elasticities between 0.4 and
0.6 (Cohen et al. 2016) and a median labor supply elasticity of 1.92 (Chen et al. 2019)—the
implied pass-through rate under perfect competition would be lower than 83%, well
below that implied by the empirical estimates reported in Table 3.39 Drawing on esti-
mates from the literature—demand elasticities between 0.4 and 0.6 (Cohen et al. 2016)
and a median labor supply elasticity of 1.92 (Chen et al. 2019)—the implied pass-through
rate would be lower than 83%, well below the estimates discussed above.

Complete pass-through and even tax over-shifting can be rationalized by the exis-
tence of market power combined with some strict assumptions on the shape of demand
and market conduct. In Section 2, I outlined several mechanisms that could also con-
tribute to the high pass-through observed in the context of ride-sharing. First, indirect
network effects between riders and drivers may amplify price responses if reduced
demand also discourages drivers from supplying rides. Second, platforms may internal-
ize substitution between single and shared rides, adjusting prices across both services.
While these channels are consistent with the observed outcomes, the available data do
not allow them to be separately identified.

The next section provides evidence consistent with substitution within ride-sharing
services, but concentrated exclusively in the downtown area. This suggests that substi-
tution alone appears insufficient to explain the broader pattern of overshifting. More-
over, because the TNP dataset lacks driver identifiers, I cannot directly test supply-side
adjustments. Still, aggregate monthly data in Figure C.1 show that the gap in driver par-
ticipation between Sample 19–20 and Sample 18–19 narrowed after the tax was imple-
mented. This pattern is suggestive of a supply response, but not conclusive. Other un-
observed forces—such as platforms’ ability to adjust the effective wage paid to drivers,
or reputational strategies whereby platforms set prices to signal that new taxes bur-
den consumers—may also have contributed to the observed outcomes. Taken together,
these considerations highlight how the high pass-through rates documented may re-
flect the interaction of multiple mechanisms.

39Absent network externalities, and thus changes in the number of drivers following the tax, the
number of rides supplied is proportional to the hours worked by a driver, i.e., S = L · σ(L) · h( p) = κ · h( p).
In this case, price changes affect supply only through their effect on hours worked, so that εS ≡ S′ PQ =
κh′ PQ = h

′ P
h ≡ εh, where εh is the labor supply elasticity.
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FIGURE 4. Dynamic effect of the tax on TNP prices

Notes: Each figure plots the coefficients that summarize the dynamic impact of the tax on the price (in
logs) of different types of TNP rides with 95% confidence intervals. The x-axis displays the number of
weeks since the implementation of the tax for observations belonging to Sample 19-20, or since January 7,
2019 for all the other observations. All regressions include controls for weather, as well as for the distance
of the trip (in miles). Standard errors are two-way clustered at the route-date level.

To gain a better understanding of the dynamics that led to the observed average
change in prices in the seven weeks after the tax implementation, I adopt an event study
design. The diamond markers in all four sub-figures of Figure 4 suggest that the trend
in TNP prices was similar across Sample1819 and Sample1920 in the weeks before the
one coinciding with the policy implementation. The squared markers instead illustrate
the point estimates of the impact—with 95% confidence intervals—of the tax on the
price (in logs) of different types of TNP rides in each of the weeks after the tax began.

The top left panel of Figure 4 illustrates that following the implementation of the tax,
prices for downtown single rides initially rose, then experienced a slight decline before
rising again. However, they consistently remained between 7.5% and 16% higher than
what they would have been absent the tax. A similar trend is observed in the bottom left
panel for single rides outside downtown, albeit with a smaller percentage increase due
to the lower tax increment. These two plots imply a significant and lasting influence of
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the tax on the prices of single rides.
The top right panel of Figure 4 illustrates the price trend for downtown shared

rides. After the tax was introduced, prices rose, with a pronounced surge in the last
two weeks of the sample, exceeding a 10% increase. This pattern may reflect a delayed
adjustment in labor supply driven by network effects. For non-downtown shared rides,
the bottom right panel of Figure 4 indicates that the average effect estimated in Table 3
was primarily driven by the increase in prices that occurred five weeks after the tax’s
implementation. The figure reveals an adjustment trend, where prices initially fell by
2.5% after the small tax reduction of $0.07 per trip but subsequently rose due to the
decrease in the supply of rides, ultimately leading to a sustained price increase.

To avoid potential data contamination caused by COVID-19, I focus on the effects of
the tax during the seven weeks immediately following its implementation. A natural
question arises as to how these short-run estimates relate to and inform the long-run
implications of the policy. In the context of a tax on ride-sharing, the time required for
the market to reach the long-run equilibrium is uncertain, as is whether the long-run
equilibrium will differ significantly from the short-run one. Notably, such differences
could emerge due to slower adjustments on the supply side. For example, drivers may
modify their hours worked only after observing changes in earnings, and decisions to
join or leave the platformmay take even longer.

Hall, Horton and Knoepfle (2021) document the transition to the new long-run
equilibrium following an increase in Uber prices, showing that drivers respond to the
increase in earnings per hour by working more. This—combined with the reduction
in demand for Uber due to the higher prices—reduces prices until, in about eight
weeks, the market reaches a new equilibrium wherein drivers earn roughly the same
amount per hour as before the price increase and riders face higher prices. Assuming a
similar adjustment process applies in my context, where I analyze seven weeks after
the tax, would suggest that my short-run estimates may reasonably approximate long-
run outcomes.

Nonetheless, without examining a longer period after the tax, I cannot rule out the
possibility that the long-run effects of the tax differ from those estimated in this paper.
Even if this is the case, documenting the short-term effects remains valuable for several
reasons. First, short-term responses of platforms and riders to the tax shed light on the
adjustment process toward the long-run equilibrium, offering insights into key aspects
of demand and supply (Hindriks and Serse 2019). Second, to the extent that supply-
side adjustments occurred during the seven weeks post-tax, my estimates may provide
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valuable insights into the longer-run effects of the tax. Third, short-term changes can
have significant welfare implications, particularly if the transition to the long-run
equilibrium takes considerable time. If my estimates do not yet reflect the long-run
equilibrium, this would suggest that the adjustment period extends beyond sevenweeks,
thus emphasizing the importance of documenting the short-term effects of the policy.

6.2. The Impact on Ride-sharing and Taxi Pickups

Section 2 illustrates how changes in the final price paid by riders for single and shared
TNP rides can influence their choice of transportation mode, potentially driving them
to substitute within ride-sharing services or switch to traditional taxi services.40

Table 4 displays the results derived from estimating Equation 1, with the number
of various types of TNP rides (columns (1)-(4)) and taxi rides (columns (5)-(6)) serving
as the dependent variable. Since the tax may influence the number of trips along both
the intensive and extensive margins, I follow the approach proposed by Chen and Roth
(2023) and estimate themodel using Poisson Pseudo-MaximumLikelihood (PPML). This
method accommodates the count nature of the data and provides consistent estimates
of the conditional mean, even in the presence of overdispersion and a large number of
zero-valued observations (Silva and Tenreyro 2006).

Regarding downtown rides, Column (1) indicates that the tax resulted in a 10.60%
reduction in single TNP pickups downtown. Simultaneously, Columns (3) reveals that
downtown rides were partially diverted to shared TNP rides, which experienced a
large and statistically significant uptick (25.60%), despite the 5.65% price hike. The
considerably largermarket share of single rides relative to shared ones, shown inTable 2,
implies that the rise in shared service usage did not offset the decline in single rides. For
what concerns the non-downtown rides, my results indicate a similar reduction in the
number of single TNP trips, but, differently from what happened for downtown rides, I
do not find evidence of an increase in usage of the shared service. The heterogeneity in
substitution patterns across different areas of Chicago can be attributed to factors such
as differing demand for single versus shared rides, variations in demand density that
facilitate ride pooling downtown, and the higher downtown tax, which led riders with
a relatively higher willingness to pay—those more inclined to choose shared rides over
cheaper options like public transit—to shift away from single rides.

40As the data does not specify the ride-sharing company providing the ride (e.g., Uber, Lyft, or Via), I
can only analyze sector-level substitutions between taxis and TNP services, which is however the main
focus of this paper.
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TABLE 4. The effect of the tax on the number of pickups

TNP Taxi

(1) (2) (3) (4) (5) (6)
Single Single Shared Shared Downtown Other

downtown other downtown other

Sample1920 0.351* 0.269*** -0.546*** -0.558*** 1.436 -0.069
( 0.203) ( 0.072) ( 0.166) ( 0.058) ( 1.223) ( 0.192)

Sample1920× Post -0.112*** -0.151*** 0.228*** -0.018 0.064 -0.013
( 0.014) ( 0.011) ( 0.031) ( 0.018) ( 0.047) ( 0.021)

Observations 160,160 5,649,280 160,160 5,542,160 160,160 4,806,880

Route FE ✓ ✓ ✓ ✓ ✓ ✓
Hour FE ✓ ✓ ✓ ✓ ✓ ✓
Period FE ✓ ✓ ✓ ✓ ✓ ✓

Notes: *** p<0.01, ** p<0.05, * p<0.1. The table reports the results of the PPML regressions used to estimate
the effect of the tax on the number of different types of rides. Columns (1) to (4) describe the effect on
the four types of TNP rides considered, whereas the last two columns refer to the effect on the number of
downtown and non-downtown taxi rides. All regressions include controls for weather. Standard errors
are two-way clustered at the route-date level and reported in parentheses.

An important question about the tax revolved around the degree to which it would
benefit taxis. This bears significance given the policy debate regarding the depreciation
of taxi medallions’ value which followed the rise of ride-sharing services. Column (5) of
Table 4 shows only a very modest and statistically insignificant shift toward traditional
taxis downtown. Column (6) also indicates no statistically significant effect for the num-
ber of non-downtown taxi pickups. Thus, I conclude that the tax had no economically
and statistically significant impact on the number of trips completed by traditional taxis.

Overall, these findings highlight the importance of riders substituting between
different ride-sharing services, while indicating a minor role played by substitution
with traditional taxis. This has important implications for TNP pricing and congestion.
My results also imply a decrease in the total number of trips across taxis and ride-
sharing services after the tax, suggesting a potential shift toward other transportation
options, such as public transit or private vehicles, which could have opposite effects on
congestion.

A significant decrease in tipping is another potential mechanism—alongside substi-
tution towards public transit or private vehicles—that could explain the limited shift
away from ride-sharing. Panel B of Table B.4 in the Appendix shows that tips remained
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stable for downtown rides and decreased slightly for non-downtown rides, though this
effect was modest. Thus, while there was a shift in tipping behavior, especially given
that tips are generally a percentage of the ride price, my findings suggest that this mech-
anism is unlikely to be a primary driver of the observed limited substitution.

6.3. The Impact on Congestion

One of the City of Chicago’s stated motivations for taxing ride-sharing was its role in
exacerbating traffic congestion, particularly in the downtown area. The documented
decrease in the number of TNP single rides downtown and the simultaneous increase
in shared TNP ride usage achieved through the tax, might offer the potential benefit of
alleviating congestion by reducing the number of vehicles on the streets.

Since the primary focus is on determining whether the tax effectively reduced
congestion in specific areas of the city, I categorize trips into six segments based on the
three macro-areas of the city defined in Section 4 (downtown, border, and other): (i)
trips where both endpoints are within the downtown zone, which I refer to as trips in the
“Downtown-Downtown” (DD) segment; (ii) trips connecting downtown to border areas,
which I refer to as trips in the “Downtown-Border” (DB) segment; (iii) trips connecting
downtown to any other area, which I refer to as trips in the “Downtown-Other” (DO)
segment; (iv) trips where both endpoints are within border areas, which I refer to as
trips in the “Border-Border” (BB) segment; (v) trips connecting border areas to any other
non-downtown area, which I refer to as trips in the “Border-Other” (BO) segment; and
(vi) all other trips. It is important to note that for (i)-(iii), the tax increment inmy sample
amounts to $2.28 for single rides and $0.53 for shared rides, while for (vi), it amounts to
$0.53 for single rides and -$0.07 for shared rides. For trips falling into categories (iv) and
(v), I cannot identify the exact tax on single and shared rides, as it could be either of
those mentioned above.

To measure traffic congestion, I consider two possible proxies. The former is simply
the average speed (in mph) of a TNP vehicle. Mangrum and Molnar (2017) rely on a
similar strategy with taxi trip records to measure historical street-level speed in NYC,
and use it as a proxy for congestion. Naturally, measuring congestion solely through
speed presents several challenges due to its inability to capture various nuances of
traffic conditions. For example, speed alone does not reflect the overall flow and density
of traffic, as congestion can occur even at high speeds if traffic volume is excessive.
To account for this, I define traffic congestion as the travel time or delay in excess of
that normally incurred under free-flow travel conditions (Lomax 1997). Specifically, I
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TABLE 5. Congestion measures before the tax

Downtown-Downtown Downtown-Border Downtown-Other Border-Border Border-Other Other

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
mean sd mean sd mean sd mean sd mean sd mean sd

Trip miles 1.519 0.689 2.378 0.835 10.04 4.490 2.248 1.075 9.930 4.572 7.358 5.850
Trip minutes 8.327 1.854 11.71 2.648 27.77 11.47 10.26 4.055 27.61 11.41 21.13 13.44
Travel Rate (minutes/mile) 6.101 1.872 5.309 1.534 2.992 1.028 4.932 1.413 3.021 1.009 3.422 1.237
Trip speed (mph) 11.22 5.296 12.33 3.882 22.52 8.320 13.30 4.305 22.29 8.352 20.45 35.56
Trip speed (mph, logs) 2.439 0.332 2.552 0.272 3.104 0.325 2.620 0.277 3.093 0.324 2.985 0.363
Delay Rate (minutes/mile) 2.448 2.044 2.636 1.566 1.205 0.957 2.276 1.434 1.272 0.928 1.161 1.126

Notes: The table presents summary statistics at the route-hour level for eachof the six segments considered.
The data refers to the weeks before the implementation of the tax in Sample 19-20. The delay rate is
computed as the difference between the actual and acceptable travel rate.

approximate traffic congestion with the delay rate, defined as:

(3) DR∗ = TR – TRacc,

where TR is the actual travel rate, i.e., the average minutes per mile of a TNP ride,
and TRacc, is the acceptable travel rate, which I compute, for each calendar date in
my sample, as the 15th percentile of the TR during off-peak times.41 It is essential to
highlight that the delay rate, while a valuable metric, is not flawless. In particular, it
may overlook congestion in areas with high traffic volume but relatively insignificant
delays. Moreover, its effectiveness relies on defining the acceptable travel rate, which
can be challenging to determine.

In constructing my measures of congestion, I only use TNP trips to control for
compositional changes in the share of trips completed by TNPs versus taxis. If I also
included taxi trips, then a change in the share of trips completed by each type of vehicle
after the tax would lead to comparing the outcomes of potentially different types of
vehicles before and after the tax. I focus on TNP rather than taxi trips because they
account for the vast majority of trips in Chicago.42

Table 5 presents summary statistics for each of the six segments analyzed in the
weeks leading up to the implementation of the tax in Sample 19-20. It is notable that

41My approach to measuring TRacc builds on the one followed by the Texas Transportation Insti-
tute at The Texas A&M University System, in the 2005 white paper titled “The Keys to Estimating Mo-
bility in Urban Areas,” available at: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=
d7fee6b8536c37873057dfea6b733142c8a8842b. Table B.5 in the appendix shows the robustness of my re-
sults to using alternative definitions of the acceptable travel rate.

42Moreover, the amount earned by a taxi driver from a given ride depends on the length of that ride,
whereas the price of a TNP ride is set before the ride. This implies that, conditional on having picked up
a passenger, a taxi driver’s speed is more likely to be affected by demand conditions, which may have
changed after the tax.

28

https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=d7fee6b8536c37873057dfea6b733142c8a8842b
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=d7fee6b8536c37873057dfea6b733142c8a8842b


FIGURE 5. Distribution across subsamples before and after the focal dates

A. Average speed–Pre B. Average speed–Post

C. Delay rate–Pre D. Delay rate–Post

Notes: The figures plot the distribution of the average speed or delay rate for any trip before or after the
focal dates (January 7, 2019 for Sample 18-19 and January 6, 2020 for Sample 19-20) separately for each
subsample (Sample 18-19 and Sample 19-20).

trips within the Downtown zone (DD segment) tend to cover shorter distances at slower
speeds. During peak times, the average speed is just above 11 mph, and it takes over 6
minutes on average to cover a mile. This is approximately 2 minutes and 30 seconds
longer thanwhat would be expected under free-flow conditions.When comparing these
statisticswith themeasures of traffic congestion in segmentswhere at least one endpoint
is definitely outside the downtown zone as defined by the city (i.e., DO, BO, and Other),
it becomes clear that congestion is much more pronounced in the downtown area.

Figure 5 illustrates the distribution of congestion measures across subsamples both
before and after the focal dates (period 0 in the DiD framework). The gap between the
two distributions appears similar before and after the focal dates, which suggests the
absence of a significant reduction in congestion, although thefigures donot differentiate
among segments.
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TABLE 6. The effect of the tax on congestion

(1) (2) (3) (4) (5) (6)
Downtown- Downtown- Downtown- Border- Border- Other
Downtown Border Other Border Other

Dep. Var. : Average speed (logs, mph)

Sample1920 -0.740*** -0.172*** 0.012 0.031*** 0.057*** 0.066***
( 0.008) ( 0.006) ( 0.037) ( 0.005) ( 0.017) ( 0.010)

Sample1920× Post 0.081*** 0.031*** 0.017* 0.031*** 0.019* 0.023***
( 0.011) ( 0.010) ( 0.010) ( 0.010) ( 0.010) ( 0.007)

Observations 4,111 8,189 224,670 12,451 441,364 2,810,250
Adj. R-sq 0.704 0.532 0.596 0.507 0.570 0.437

Dep. Var. : DR*

Sample1920 1.767*** 0.799*** -0.030 0.058 -0.074** -0.035*
( 0.124) ( 0.047) ( 0.060) ( 0.043) ( 0.029) ( 0.018)

Sample1920× Post -0.563*** -0.033 -0.006 0.024 -0.017 -0.025
( 0.163) ( 0.078) ( 0.035) ( 0.071) ( 0.035) ( 0.025)

Observations 4,111 8,189 224,664 12,451 441,355 2,809,393
Adj. R-sq 0.375 0.484 0.480 0.408 0.451 0.194

Route FE ✓ ✓ ✓ ✓ ✓
Hour FE ✓ ✓ ✓ ✓ ✓ ✓
Period FE ✓ ✓ ✓ ✓ ✓ ✓

Notes: *** p<0.01, ** p<0.05, * p<0.1. Each column summarizes the results of a specification relative to one
of the six segments considered. In the top panel, the dependent variable is the logarithm of the average
speed (in mph), whereas in the bottom panel, the dependent variable is the Delay rate. Standard errors
are two-way clustered at the route-date level and reported in parentheses. The Route FE is absent in
Column (1) as there is only one route in the DD segment.

To formally study the impact of the tax on average speed and delay rates across the
six defined segments, I employ Equation 1 once again and run six distinct regressions—
one per segment—for each dependent variable. The results are presented in Table 6. In
the upper panel, it is evident that average speed increased across all segments, with
statistically significant enhancements ranging from 2.3% to 8.4%. The most substantial
improvement, reaching almost 1 mph, was observed in DD trips, which were arguably
the primary focus of the tax. Moreover, the policy’s higher effectiveness downtownmay
be explained by riders’ outside options: switching to transit is easier if one endpoint of
the trip is within downtown, making it more likely that a reduction in ride-sharing trips
results in fewer vehicles on the streets.

From a policy standpoint, delay rates are conceivably a more relevant metric as
they directly measure the time savings attributed to the intervention. While the tax
marginally reduced delay rates across most segments, the statistically significant effect
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was only observed in DD trips. These trips experienced an average time savings of
approximately 34 seconds per mile, translating to about 51 seconds per trip, on average.
Consequently, the congestion-alleviating benefits of the tax appear concentrated on
trips that both originate and end within Chicago’s central business district, while the
overall magnitude of the improvement remains relatively modest.43 As a benchmark,
using ride-sharing data, Buchholz et al. (2020) estimate the average value of time to be
$13.47 per hour, although it can vary significantly among individuals. Based on this, the
tax would yield an average saving of approximately $0.19 per trip for ride-sharing users,
which appears relatively low compared to the magnitude of the tax increment and the
resulting rise in ride-sharing prices.44

Overall, the documented impact of the tax on traffic congestion suggests that the
rise of ride-sharing companies is not solely responsible for exacerbating congestion.
Therefore, implementing congestion pricing schemes that also target taxis and private
vehicles might yield more effective results.

7. Conclusion

This paper examines the effects of a targeted tax on ride-sharing platforms using trip-
level data from the City of Chicago. I document the extent to which the tax is passed
through to riders, analyze its impact on competitive dynamics with traditional taxis,
and assess its potential to mitigate urban congestion, which represents a major urban
mobility challenge and a key negative externality often associated with ride-sharing.

The analyses generate three main sets of results. First, I estimate how ride-sharing
platforms adjust their prices in response to transaction taxes. I find that the prices of
both single and shared TNP rides significantly increased, with point estimates of average
tax pass-through rate above 100%. While substitution across services helps explain this
pattern, it does not fully account for the extent of the price response. This suggests
that other forces, such as platformmarket power or indirect network effects between
drivers and riders, may have also contributed to the observed outcomes. Second, while
higher prices decreased ride-sharing usage, this effect was partially offset in downtown
Chicago by riders substituting single with shared rides. Additionally, the tax did not

43On weekdays, congestion may be more severe during rush hours, and there could be particular
interest from policymakers in alleviating traffic congestion during these times. Thus, in Table C.3, I also
present evidence indicating that the benefits of the tax were not significantly greater during rush hours.

44These calculations reflect only the direct benefits to ride-sharing users and do not account for
potential congestion relief accruing to other road users (private vehicles, taxis, public transit), which
may be larger but cannot be quantified without citywide traffic flow data.
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significantly shift demand back to taxis. Lastly, while the tax encouraged the usage of
shared rides downtown, its impact on reducing traffic congestion remained modest.

The analyses presented in this article shed light on the potential drawbacks of taxes
targeting platforms competing with regulated incumbents. They suggest how such taxes
could result in a significant increase in prices, primarily borne by platforms’ users.
Furthermore, my analyses also indicate that these policies may not be as effective as
expected in leveling the playing field between platforms and regulated incumbents, nor
in tackling the negative externalities associated with platforms, such as congestion in
the context of ride-sharing. However, it is important to note that tax incidence analysis
is just the initial step in understanding the welfare implications of these taxes. For a
more comprehensive welfare analysis and to explore optimal tax policies, a detailed
structural model is essential. The availability of public data and the relevance of the tax
on ride-sharing make Chicago an extraordinary laboratory to go down this route.
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ONLINE APPENDICES FOR “The Effects of Targeted Platform Taxes:
Evidence from Ride-Sharing and Taxis”

Appendix A. Example with Linear Demand and Supply

Consider the same framework outlined in Section 2 and assume that D( p) = a – b p,
σ(L) = σ and h( p) = z p, with a, b, z > 0 and a > b p. Hence, the aggregate supply of rides
is S( p,L) = σLz p, where the number of drivers in the market L depends on the expected
earnings and is endogenously determined in the model. The goal of this section is to
show that under some conditions on the parameters of this linear model it is possible
to have a pass-through rate above one, i.e., to have that the price received by drivers
after the tax is higher than the pre-tax one.

Denote by L0, p0,Q0, e0 the pre-tax equilibrium number of drivers, the market price
of a ride, the total number of rides and the drivers’ individual earnings, respectively.
Note that by definition p0 = p0dr. Suppose a tax t falling on riders is imposed on ride-
sharing rides. I assume that L0 < N, i.e., at the initial equilibrium not all the drivers are
in the market, which requires that the earnings when all drivers are in the market are
strictly below the highest outside option ω̄.1 The tax induces a parallel shifts in demand
and, by equating demand and supply, one can show that:

(A.1) p′dr(L
′) =

a – bt
zσL′ + b

(A.2) Q′(L′) =
zσL′(a – bt)
zσL′ + b

(A.3) e′(L′) =
zσ(1 – ν)(a – bt)2

(zσL′ + b)2
,

where Q′, p′dr, e
′ respectively are: the equilibrium number of rides, the price received

by drivers and the individual earnings of drivers prevailing after the tax as a function
of the new post-tax equilibrium number of drivers L′. The price paid by consumers is
p′ = p′dr + t.

1This assumption rules out the case in which all drivers choose to work after the tax, and hence the
pass-through rate cannot exceed one because the equilibriummoves along the initial supply curve.
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To fully characterize the equilibrium, one has to solve for L′. However, the final
equilibrium in this model is the result of an adjustment process that proceeds as follows.
First, demand for rides goes down, reducing the number of rides and the price earned
by drivers, but increasing the price paid by riders. Second, this generates a reduction in
expected earnings, which decreases the number of drivers in the market. The reduction
in the number of drivers reduces the aggregate supply of rides, and hence leads to
a further reduction in the number of rides and to an increase in the price earned by
drivers. At this point, expected earnings change again, affecting the number of drivers in
the market, and hence the aggregate supply of rides, which in turn prompts changes in
price and number of rides. This feedback cycle repeats itself until the final equilibrium
is reached, where the marginal driver deciding to enter earns exactly their outside
option. Hence, in any equilibrium, it must hold that: L′ = Pr(ω ≤ e′)N. Since drivers are
heterogeneous in their outside optionsω, which is uniformly distributed over [0, ω̄]
with ω̄ > 0, the following equation pins down the fixed point of the system:

(A.4) L′ =
Nzσ(1 – ν)(a – bt)2

ω̄(zσL′ + b)2
.

Thus, once one has solved (A.4) for L′, it is possible to find all the other equilibrium
objects by using Equations (A.1)–(A.3).

I start by showing that, under the assumptions of this model, a solution to (A.4)
always exists and it is unique.

Lemma 1. Suppose L0 < N. Then, the solution to Equation (A.4), L′ ∈ [0,N], always exists
and is unique.

Proof. Define µ′ as the share of drivers in the market at the after-tax equilibrium, with
µ′ ∈ [0, 1]. Then, one can rewrite Equation (A.4) as:

(A.5) µ′ =
zσ(1 – ν)(a – bt)2

ω̄(zσµ′N + b)2
.

The LHS (RHS) is monotonically strictly increasing (decreasing) in µ′. Thus, L′ exists
if and only if the following two conditions are simultaneously satisfied:
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(A.6) lim
µ′→0

µ′ ≤ lim
µ′→0

zσ(1 – ν)(a – bt)2

ω̄(zσµ′N + b)2
,

(A.7) lim
µ′→1

µ′ ≥ lim
µ′→1

zσ(1 – ν)(a – bt)2

ω̄(zσµ′N + b)2
.

(A.6) implies zσ(1–ν)(a–bt)
2

ω̄(zσN+b)2 ≥ 0, which is always satisfied as all the terms on the LHS

are strictly positive. (A.7) implies zσ(1–ν)(a–bt)
2

ω̄(zσN+b)2 ≤ 1, which is always satisfied. To see this,
note that the expression can be rearranged as:

ω̄ ≥ zσ(1 – ν)(a – bt)2

(zσN + b)2

where the RHS represents the expected earnings of a driver when all N drivers are on
the market and the LHS is the highest outside option. Since by assumption L0 < N,
it must be that the earnings when all drivers are in the market are strictly below the
highest outside option, and hence holds (A.7).

Moreover, since both (A.6) and (A.7) are satisfied with strict inequality, then the
solution to (A.4) is unique.

Next, I show that if a solution to (A.4) exists, then L′ is decreasing in the tax, and
hence L′ < L0.

Lemma 2. For any t1 < t2, L′(t1) > L′(t2).

Proof. Suppose by contradiction t1 < t2 and L′(t1) < L′(t2). Then,

L′(t1) < L′(t2) =⇒ a – bt1
a – bt2

<
zσL′(t1) + b
zσL′(t2) + b

,

but

a – bt1
a – bt2

> 1 >
zσL′(t1) + b
zσL′(t2) + b

,

a contradiction.
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The next result shows under what conditions p′dr > p0.

Proposition 1. For any t1 < t2, p′dr(t2) > p′dr(t1) if and only if

(A.8)
a – bt2
a – bt1

>
zσL′(t2) + b
zσL′(t1) + b

.

In particular, when t1 = 0 and t2 ≡ t, then p′dr > p0 if and only if

(A.9) L0 – L′ >
bt(zσL0 + b)

azσ
,

i.e., if and only if the change in the number of drivers on the market is large enough.

Proof. The results directly follow from evaluating Equation (A.1) at t1 and t2 (and at 0
and t, respectively), and rearranging the expressions.

Using a similar approach, one can also derive the following condition ensuring that
the equilibrium number of rides decreases:

Q′(t2) > Q′(t1) ⇐⇒ a – bt2
a – bt1

<
L′(t1)
L′(t2)

(zσL′(t2) + b)
(zσL′(t1) + b)

.

TABLE A.1. Example of the Equilibrium Effects of a $1 Tax (t = 1) on Ride-sharing

(1) (2) (3) (4)
Parameters Pre-tax Equilibrium Shift in Demand Post-tax Equilibrium

(Off-Equilibrium)

a = 150 LA = 90 LB = 90 LC = 50.76
b = 10 pA,dr = 4.62 pB,dr = 4.31 pC,dr = 6.17
N = 100 pA = 4.62 pB = 5.31 pC = 7.17
ω̄ = 15 QA = 103.85 QB = 96.98 QC = 78.30

σ = z = 0.5 eA = 4.26 eB = 3.72 eC = 7.61
ν = 0.2

Notes: Column (1) summarizes the value of the model parameters chosen. Column (2) ((4)) characterizes
the equilibrium before (after) the tax, i.e., at point A (C) in Figure 1A. Column (3) describes the values of
the variables right after the shift in demand and before the first adjustment in the number of drivers L.
This corresponds to point B in Figure 1A.
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Example. Table A.1 presents an example with parameters chosen in a way that would
lead to equilibriumadjustments consistentwith those displayed in Figure 1A of Section 2.
In particular, I choose parameter values such that, after a $1 tax, the change in the
number of equilibrium drivers is large enough, i.e., satisfies (A.9). In this example, the
pass-through rate of the tax is above one (2.55).

A.1. Different tax amounts on competing ride-sharing services

The previous section focuses on the role played by network effects between drivers
and riders in inflating pass-through rates. However, Section 2 presents an additional
mechanism thatmay lead to higher prices in the empirical context studied by this paper,
namely the fact that ride-sharing companies offer two competing services (single and
shared rides) and these are taxed asymmetrically.

Next, I discuss how the fact that ride-sharing platforms offer single and shared rides
may impact the post-tax equilibrium. To gain intuition into the problem, consider a
simple setting with any supply function for single and shared rides and with a demand
for service j = {single, shared} such as D j = a j – b p j + ζ pk, with j ̸= k and b > ζ ≥ 0.
This parametrization assumes similar own- and cross-price elasticities of demand for
single and shared rides.2

Suppose a tax schedule is imposed with tsingle > tshared > 0. Under these assump-
tions, the tax schedule will always shift the demand for single rides inward. However,
the tax could shift the demand for shared rides outward. This happens if and only if:

(A.10)
tsingle

tshared
>
b
ζ
.

Panel A of Figure A.1 illustrates the effect of the tax on the market for single rides
assuming no network effects between drivers and riders. Suppose that, before the tax,
the equilibrium is at point A. The post-tax equilibrium is at point B, where drivers
earn a lower price per ride and the number of rides is lower. While the sign of the
shift in demand is not ambiguous, a lower cross-price elasticity of demand with shared
rides would make the reduction in demand larger. For example, B′ shows a post-tax
equilibrium without network effects where ζ′ < ζ. This implies that, in the market for
single rides, a greater cross-price elasticity of demand between single and shared rides
leads to higher prices and number of rides.

2It is also realistic to assume asingle > ashared because at the same price, the demand for single rides
will be larger demand than that for shared rides.
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Consider now the effects of the same tax on the market for shared rides. In this case,
if the cross-price elasticity of demand ζ is sufficiently large, the tax policy could shift the
demand for shared rides outward. Panel B of FigureA.1 presents this case: in the absence
of network externalities, point B shows the new equilibriumwhen inequality A.10 holds,
whereas B′ illustrates the opposite case. Therefore, also in the market for shared rides,
increasing the cross-price elasticity of demand between single and shared rides leads
to higher prices and number of rides. However, the tax may also increase the number
of shared rides relative to the initial equilibrium.

In practice, as discussed in Section 2, networks effects also play a role. Allowing for
them, and hence for the supply to adjust in response to the tax, will increase the price
and reduce the equilibrium number of rides in each market.

FIGURE A.1. Potential effects of the tax on the markets for single and shared rides

A. Single ride-sharing B. Shared ride-sharing

Notes: The figures show the possible effects of a tax of ride-sharing which levies a larger amount on single
than shared rides, assuming no network externalities between drivers and riders.
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Appendix B. Robustness Checks

I begin by describing in detail the robustness checks I perform. Then, the next subsec-
tion presents the tables and figures with the results of the analyses.

B.1. Description of the Analyses and Discussion of Results

Equation 1 is the baseline specification I use to estimate the average short-run effect
of the tax on the market outcomes of interest. To examine the dynamic effects of the
tax—as shown in Figure 4 in the main text—I run event study regressions of the form:

yi,h, j ,t =β0 + β1 · Sample1920i,h, j +
∑
k ̸=–1

γk ·
(
Sample1920i,h, j × Dk,t

)
+

+ β3 · Xi,h, j ,t + αi + αh + αt + εi,h, j ,t

(B.1)

where Dk,t equals one if period t falls in the kth 5-periods interval (week) around period
0. I consider six weeks before and seven weeks after the tax, with their corresponding
weeks in Sample 18-19, so that k ∈ {–6, ..., 6}. For example, D1,t equals one for all five
days of the weeks starting on January 14, 2019 and on January 13, 2020. In this way,
γs capture the average difference in the outcome variable between treatment and
control group in each of the thirteen intervals around period 0. To control for each of
the k intervals specific time-invariant characteristics, αt includes their fixed effects.
Moreover, since days of the week may have specific demand or supply patterns, I also
include day-of-the-week fixed effects. Thus, αt =

∑
k ̸=–1 δk,t · Dk,t +

∑
u∈U ξu,t · Iu,t, U =

{Monday, Tuesday, Wednesday, Thursday} where Iui j equals one when the observation
refers to the uth day of the week. The remaining variables are defined as in Equation 1,
and standard errors are two-way clustered by date and route.

Figure B.1 in this Appendix, and Figure 4 in the text show the results of these analyses
for prices and number of rides. Post-treatment, the patterns are, in some cases, noisy,
likely reflecting idiosyncratic daily shocks. While there are some minor departures
from exact parallel trends, the pre-treatment trajectories are broadly stable, supporting
the validity of the parallel trends assumption.

As mentioned in the text, I conduct three additional sets of robustness checks.
The first one concerns the sample selection procedure described in Section 4. Since
my empirical strategy hinges on using Sample 18-19 as a control group for Sample 19-
20, which includes the actual tax implementation date, making them comparable is
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a necessary step. To that end, I exclude the following holiday periods: (i) the weeks
including Thanksgiving 2018 and 2019; (ii) the week following Thanksgiving 2018 and the
one preceding Thanksgiving 2019; (iii) Christmas 2018 and 2019. Points (i)-(ii) address the
fact that Thanksgiving happened in different weeks of November in the two subsamples.
Therefore, if I did not exclude all these weeks, I would eventually be lining up and
comparing weeks in which a major holiday such as Thanksgiving took place with ones
in which no holiday occurred. Point (iii) addresses the potential concern that riding
patterns may differ across subsamples in a particular holiday week such as that of
Christmas.3 Table B.2 shows that although including these weeks in the final sample
may lead to the parallel-trend assumption not holding in every pre-tax period, the
estimates of the average effect of the tax on prices remain similar.

Furthermore, I perform additional robustness tests to validate the estimates of the
effects of the tax on the number of the different types of pickups considered. To that end,
first, since the week of New Year’s Eve is aligned across Sample 18-19 and 19-20 and is not
characterized by unusual riding pattern, I include it in my main sample. Nonetheless, I
verify the robustness of my results to this choice by analyzing how results would change
if I dropped the week of New Year’s Eve from Sample 18-19 and 19-20. Table B.3 shows
that the average effect on the number of pickups is similar to that in Table 4.

Second, the baseline specification presented in Equation 1 is a standard Two-Way
Fixed Effects (TWFE) Difference-in-Differences (DiD) approach. Recently, several ar-
ticles showed that the coefficients estimated in this way may not represent a straight-
forward weighted average of unit-level treatment effects when treatment effects are
allowed to be heterogeneous (Roth et al. 2023). Specifically, when the treatment effect is
heterogeneous, TWFEmodels may compare units that have already been treated, possi-
bly leading to TWFE coefficients having the opposite sign of all individual-level treat-
ment effects (an issue often referred to as “negative-weighting”). Borusyak, Jaravel and
Spiess (2021) (henceforth, BJS (2021)) develop an imputation estimator that addresses
the limitation of TWFE models. Generally speaking, negative-weighting concerns tend
to be restricted to settings in which the treatment is staggered, i.e. units become treated
at different points in time. However, although I compared units across different years
(Sample 18-19 and Sample 19-20), in my context the treatment is not staggered because
the tax is implemented for all TNP services on the same date. In effect, re-estimating
my DiD specification following the approach in BJS (2021) yields similar results.

3For example, there could be special aspects of a Christmas week in a given year, such as the number
of tourists using ride-sharing or taxis, that I would be otherwise unable to control for.
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The third set of checks considers alternatives outcomes for prices and congestion.
First, Panel A of Table B.4 shows that results are robust when I use the price per mile
charged by ride-sharing companies instead of the price (in logs). Since changes in
tippingbehaviormaymitigate riders’ incentives to substitute away fromsingle TNP rides,
I also study how the tax affected tips for different rides.While tips are typically given as a
percentage of the ride fare, and hence one may expect them to increase after the policy,
Panel B of Table B.4 shows that tips did not change for downtown rides and decreased for
non-downtown rides. However, the modest magnitude of these effects suggests that this
mechanism is unlikely to contribute to explaining riders’ substitution patterns. Second,
the paper uses two different measures of congestion: speed, which is perhaps the most
common proxy, and delay rate. For the latter, to measure the acceptable (i.e., the free-
flow) travel rate (TR), previous studies have typically examined the variable’s distribution
during off-peak times. In the main text, I selected the 15th percentile. To mitigate
potential concerns regarding this choice, in Table B.5, I include several robustness
checks using alternative definitions of acceptable travel rates. Specifically, I employ
different percentiles of the distribution and standardized measures of acceptable TR
for various city areas (e.g., central business district, suburban areas, etc.). All results
are consistent with those presented in the main text.

Finally, Figure 3 highlights how ride-sharing prices (and hence potentially demand)
may be non-stationary over the study period. Therefore, I further validate my approach
by augmenting Equation 1 with a linear trend representing calendar weeks. Table B.1
shows that the estimation results for the effect of the tax on the price of different TNP
services are robust to those shown in Table 3 in the main text.

COVID-19. In the main text, I discuss potential contamination from the COVID-19 pan-
demic. Here, I present several factors and supporting evidence showing that excluding
observations after February 21, 2020, helps mitigate concerns about sample contamina-
tion.

First, the lockdown occurred aftermy sample period ended. Until mid-March, offices
and universities remained open, and all events continued in person as usual. Specifically,
Illinois issued its first “stay-at-home” order on March 20, 2020, and the University of
Chicago halted in-person instruction only on March 15, 2020.

However, even without an official lockdown, individuals may have changed their
behavior due to the spread of the virus or the news circulating about it. To assess this,
I examined case numbers and found that they only began to increase in March 2020.
As of March 2, 2020—already beyond my sample period—only four COVID-19 cases
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were confirmed by Illinois health officials.4While case numbers may be influenced by
reporting biases, this is consistent with the notion that public attention and concern
about COVID-19 were not particularly high before March 2020.

Additionally, economic activity in February 2020 did not show signs of slowing.
The Chicago Business Activity Index (CBAI), developed by The Regional Economics
Applications Laboratory at the University of Illinois at Urbana-Champaign, provides
monthly estimates of changes in Chicago’s economic activity. The CBAI report released
on April 18, 2020, shows that economic activity grew in Chicago in February 2020, with
the index increasing to 103.3 from 101.9 in January 2020.5 This report further indicates
that COVID-19 began impacting the economy only in March 2020.

Lastly, using Google search data, I analyzed whether there was significant interest in
the term “COVID” during my sample period. Figure B.2 shows that interest in the term
only began to rise in the first week of March 2020, spiking considerably by mid-March.
While these patterns cannot completely dismiss the possibility that the anticipation of
COVID-19’s spread influenced some drivers’ and riders’ behaviors, they indicate that
any such influence was limited and unlikely to significantly impact the results of my
analyses.

4For example, see the article at: https://abc7chicago.com/coronavirus-chicago-illinois-update-cases-
covid-19-news/5973196/.

5This report is available at: https://real.web.illinois.edu/wp-content/uploads/CBAI/20/CBAI_0420.pdf.
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B.2. Results: Tables and Figures

TABLE B.1. The effect of the tax on TNP prices: Time trend robustness check

(1) (2) (3) (4)
Single downtown Single other Shared downtown Shared other

Sample1920 -0.047*** 0.004 -0.023 0.026***
( 0.014) ( 0.005) ( 0.029) ( 0.007)

Sample1920× Post 0.117*** 0.033*** 0.055*** 0.018***
( 0.006) ( 0.003) ( 0.009) ( 0.005)

Observations 127,700 1,581,150 107,321 1,229,076
Adj. R-sq 0.910 0.908 0.731 0.715

Route FE ✓ ✓ ✓ ✓
Hour FE ✓ ✓ ✓ ✓
Period FE ✓ ✓ ✓ ✓
Week of the year trend ✓ ✓ ✓ ✓

Notes: *** p<0.01, ** p<0.05, * p<0.1. Each column describes the effect of the tax on the price (in logs) of
different types of TNP rides. All regressions include controls for weather and the distance of the trip (in
miles, as well as calendar week linear trend. Standard errors are two-way clustered at the route-date level
and reported in parentheses.
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FIGURE B.1. Event study for the effect of the tax on TNP pickups

Notes: Each figure plots the γks coefficients and their 95% confidence intervals estimated via PPML
regressions similar to Equation B.1. The coefficients summarize the dynamic impact of the tax on the
number of different types of TNP rides. The x-axis displays the number of weeks since the implementation
of the tax for observations belonging to Sample 19-20, or since January 7, 2019 for all the other observations.
All regressions include controls for weather.
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FIGURE B.2. Interest towards COVID-19 in the weeks following the tax implementation

Notes: The figures show the interest in searching the word “COVID” on Google Trends. The y-axis shows
the relative search interest, for which a value of 100 is the peak popularity for the term, whereas a score
of 0 means there was not enough search for this term. The top figure highlights the score during the
week of February 16, the most recent included in my sample, whereas the bottom figure highlights the
score during the first week of March.
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TABLE B.2. The effect of the tax on TNP prices: no week dropped

(1) (2) (3) (4)
Single downtown Single other Shared downtown Shared other

Sample1920 -0.044*** 0.004 -0.024 0.026***
( 0.014) ( 0.005) ( 0.029) ( 0.006)

Sample1920× Post 0.115*** 0.033*** 0.055*** 0.018***
( 0.007) ( 0.004) ( 0.008) ( 0.004)

Observations 155,843 1,935,490 130,099 1,493,999
Adj. R-sq 0.907 0.907 0.728 0.716

Route FE ✓ ✓ ✓ ✓
Hour FE ✓ ✓ ✓ ✓
Period FE ✓ ✓ ✓ ✓

Notes: *** p<0.01, ** p<0.05, * p<0.1. Each column describes the effect of the tax on the price (in logs)
of different types of TNP rides. The sample used retains all weeks, including Christmas and the weeks
around Thanksgiving, as described in Section B. Moreover, all regressions include controls for weather
and the distance of the trip (in miles). Standard errors are two-way clustered at the route-date level and
reported in parentheses.

14



TABLE B.3. The effect on prices and number of pickups excluding NYE

TNP Taxi

(1) (2) (3) (4) (5) (6)
Single Single Shared Shared Downtown Other

downtown other downtown other

Panel A: Prices (in logs)

Sample1920 -0.049*** 0.005 -0.027 0.030*** -0.242*** -0.022
( 0.015) ( 0.006) ( 0.031) ( 0.007) ( 0.069) ( 0.033)

Sample1920× Post 0.123*** 0.036*** 0.062*** 0.022*** -0.005 0.008**
( 0.007) ( 0.003) ( 0.009) ( 0.005) ( 0.005) ( 0.004)

Observations 118,609 1,471,993 99,873 1,143,758 56,069 240,442
Adj. R-sq 0.912 0.904 0.730 0.698 0.730 0.754

Panel B: Number of rides (PPML)

Sample1920 0.359* 0.260*** -0.539*** -0.577*** 1.457 -0.049
( 0.206) ( 0.072) ( 0.166) ( 0.057) ( 1.225) ( 0.194)

Sample1920× Post -0.129*** -0.145*** 0.217*** -0.003 0.032 -0.035
( 0.006) ( 0.007) ( 0.026) ( 0.015) ( 0.044) ( 0.025)

Observations 147,840 5,209,920 147,840 5,114,880 147,840 4,427,520

Route FE ✓ ✓ ✓ ✓ ✓ ✓
Hour FE ✓ ✓ ✓ ✓ ✓ ✓
Period FE ✓ ✓ ✓ ✓ ✓ ✓

Notes: *** p<0.01, ** p<0.05, * p<0.1. Columns (1) to (4) describe the effect of the tax on the prices and
number (in logs and levels) of different types of TNP rides, whereas the last two columns refer to the
same effects for taxi rides. All regressions include controls for weather. Standard errors are two-way
clustered at the route-date level and reported in parentheses.
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TABLE B.4. The effect on tips and price per mile for TNPs

(1) (2) (3) (4)
Single downtown Single other Shared downtown Shared other

Panel A: Price per mile

Sample1920 0.366* -0.019 0.166 0.038
( 0.213) ( 0.048) ( 0.110) ( 0.052)

Sample1920× Post 0.342*** 0.115*** 0.059*** 0.039**
( 0.034) ( 0.013) ( 0.013) ( 0.015)

Observations 127,697 1,580,999 107,318 1,228,861
Adj. R-sq 0.759 0.497 0.589 0.320

Panel B: Tips

Sample1920 -0.003 0.006 0.014 0.014***
( 0.049) ( 0.007) ( 0.028) ( 0.003)

Sample1920× Post -0.005 -0.018*** 0.003 -0.005**
( 0.007) ( 0.004) ( 0.005) ( 0.002)

Observations 127,700 1,581,150 107,321 1,229,076
Adj. R-sq 0.141 0.166 0.096 0.057

Route FE ✓ ✓ ✓ ✓
Hour FE ✓ ✓ ✓ ✓
Period FE ✓ ✓ ✓ ✓

Notes: *** p<0.01, ** p<0.05, * p<0.1. Columns (1) to (4) describe the effect of the tax on the prices per mile
and tips for different types of TNP rides. All regressions include controls for weather and the distance of
the trip (in miles). Standard errors are two-way clustered at the route-date and reported in parentheses.
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TABLE B.5. The effect of the tax on alternative measures of the delay rate

(1) (2) (3) (4) (5) (6)
Downtown- Downtown- Downtown- Border- Border- Other
Downtown Border Other Border Other

Dep. Var. : DR5

Sample1920 3.218*** 1.397*** 0.202** 0.602*** 0.088** 0.115***
( 0.128) ( 0.074) ( 0.099) ( 0.062) ( 0.039) ( 0.024)

Sample1920× Post -0.504*** -0.232** -0.060* -0.166* -0.058 -0.062**
( 0.173) ( 0.109) ( 0.034) ( 0.083) ( 0.036) ( 0.026)

Adj. R-sq 0.616 0.547 0.499 0.406 0.464 0.237

Dep. Var. : DR25

Sample1920 1.059*** 0.424*** 0.202** -0.252*** 0.088** 0.115***
( 0.093) ( 0.053) ( 0.099) ( 0.043) ( 0.039) ( 0.024)

Sample1920× Post -0.254* -0.071 -0.060* 0.093 -0.058 -0.062**
( 0.134) ( 0.076) ( 0.034) ( 0.070) ( 0.036) ( 0.026)

Adj. R-sq 0.275 0.444 0.499 0.414 0.464 0.237

Dep. Var. : DRL

Sample1920 3.462*** 0.507*** 0.002 -0.304*** -0.160*** -0.188***
( 0.050) ( 0.033) ( 0.116) ( 0.030) ( 0.053) ( 0.036)

Sample1920× Post -0.505*** -0.129** -0.080** -0.126** -0.092** -0.107***
( 0.069) ( 0.056) ( 0.035) ( 0.054) ( 0.036) ( 0.028)

Adj. R-sq 0.655 0.533 0.652 0.530 0.588 0.424

Observations 4,111 8,189 224,664 12,451 441,355 2,809,393
Route FE ✓ ✓ ✓ ✓ ✓
Hour FE ✓ ✓ ✓ ✓ ✓ ✓
Period FE ✓ ✓ ✓ ✓ ✓ ✓

Notes: *** p<0.01, ** p<0.05, * p<0.1. Each column summarizes the results of a specification relative to
one of the six segments considered. Each panel uses alternative measures of the delay rate. In the top
and middle panels, I compute the acceptable travel rate using the 5th and 25th of the TR during off-peak
times, respectively. In the bottom panel, I use the benchmark acceptable travel rates provided in Lomax
et al. (1997) for different areas of a city (CBDs, major activity centers, and suburban areas). The Route FE
is absent in Column (1) as there is only one route in the DD segment.

17



Appendix C. Additional Tables and Figures

TABLE C.1. The effect of the tax on taxi prices

(1) (2) (3) (4)
Downtown Downtown Other Other

Sample1920 -0.243*** -0.551*** -0.022 -0.033
(0.070) (0.096) (0.033) (0.062)

Sample1920× Post -0.003 -0.008 0.008** 0.003
(0.005) (0.005) (0.004) (0.004)

Observations 59,781 59,781 258,162 258,162
Adjusted R-sq 0.734 0.665 0.754 0.646

Trip distance (miles) ✓ ✓
Route FE ✓ ✓ ✓ ✓
Hour FE ✓ ✓ ✓ ✓
Period FE ✓ ✓ ✓ ✓

Notes: *** p<0.01, ** p<0.05, * p<0.1. Each column describes the effect of the tax on the price (in logs) of
different types of taxi rides. All regressions include controls for weather. Standard errors are two-way
clustered at the route-date level and reported in parentheses.

TABLE C.2. The effect of the tax on TNP and taxi trip miles

TNPs Taxis

(1) (2) (3) (4) (5) (6)
Single downtown Single other Shared downtown Shared other Downtown Other

Sample1920 -0.176*** -0.014*** -0.064*** 0.019*** -0.155*** -0.003***
( 0.001) ( 0.000) ( 0.002) ( 0.000) ( 0.004) ( 0.000)

Sample1920× Post -0.004*** 0.002*** -0.002 -0.006*** -0.008** -0.000
( 0.001) ( 0.000) ( 0.002) ( 0.001) ( 0.003) ( 0.000)

Observations 160,160 5,650,320 160,160 5,549,440 160,160 4,811,040
Adj. R-sq 0.817 0.912 0.769 0.905 0.646 0.943
Route FE ✓ ✓ ✓ ✓ ✓ ✓
Hour FE ✓ ✓ ✓ ✓ ✓ ✓
Period FE ✓ ✓ ✓ ✓ ✓ ✓

Notes: *** p<0.01, ** p<0.05, * p<0.1. Each column describes the effect of the tax on the miles (in logs) of
different types of TNP and taxi rides. All regressions include controls for weather.
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TABLE C.3. The effect of the tax on congestion during rush hours

(1) (2) (3) (4) (5) (6)
Downtown- Downtown- Downtown- Border- Border- Other
Downtown Border Other Border Other

Dep. Var. : Average speed (logs, mph)

Sample1920 -0.753*** -0.172*** 0.009 0.024*** 0.053*** 0.063***
( 0.008) ( 0.007) ( 0.037) ( 0.007) ( 0.018) ( 0.011)

Sample1920× Post 0.088*** 0.032*** 0.021* 0.033*** 0.022* 0.025***
( 0.012) ( 0.010) ( 0.011) ( 0.011) ( 0.012) ( 0.008)

Sample1920× Post× Rush-hours -0.030 0.019 0.005 0.029 0.013 0.012
( 0.038) ( 0.027) ( 0.039) ( 0.029) ( 0.039) ( 0.024)

Observations 4,111 8,189 224,670 12,451 441,364 2,810,250
Adj. R-sq 0.705 0.531 0.596 0.506 0.570 0.436

Dep. Var. : DR*

Sample1920 1.724*** 0.788*** 0.009 0.079 0.053*** -0.027
( 0.126) ( 0.050) ( 0.037) ( 0.047) ( 0.018) ( 0.021)

Sample1920× Post -0.557*** -0.036 0.021* 0.024 0.022* -0.024
( 0.164) ( 0.081) ( 0.011) ( 0.076) ( 0.012) ( 0.028)

Sample1920× Post× Rush-hours 0.287 -0.170 0.005 -0.232 0.013 -0.096
( 0.175) ( 0.148) ( 0.039) ( 0.152) ( 0.039) ( 0.102)

Observations 4,111 8,189 224,670 12,451 441,364 2,809,393
Adj. R-sq 0.373 0.484 0.596 0.407 0.570 0.194

Route FE ✓ ✓ ✓ ✓ ✓
Hour FE ✓ ✓ ✓ ✓ ✓ ✓
Period FE ✓ ✓ ✓ ✓ ✓ ✓

Notes: *** p<0.01, ** p<0.05, * p<0.1. Each column summarizes the results of a specification relative to one
of the six segments considered. In the top panel the dependent variable is the logarithm of the average
speed (in mph), whereas in the bottom panel the dependent variable is the Delay rate. Rush-hour is a
dummy equal to one when the observation is relative to a time between 7 am and 9 am or 4 pm and
6pm. In all regressions I control for (Sample 19-20× Rush-hours) and (Post× Rush-hours), as well as for
weather. The Route FE is absent in Column (1) as there is only one route in the DD segment.

TABLE C.4. Structure of the tax during off-peak times

Type of ride Tax amount Tax amount Tax
before January 6, 2020 after January 6, 2020 increment

Downtown Single TNP trip $0.72 $1.25 +$0.53

Other Single TNP trip $0.72 $1.25 +$0.53

Downtown Shared TNP trip $0.72 $0.65 -$0.07

Other Shared TNP trip $0.72 $0.65 -$0.07

Taxi trip $0.00 $0.00 $0.00

Notes: The amounts refer to the tax paid by the provider to the City of Chicago for each trip completed
off-peak. Peak times are Mondays, Tuesdays, Wednesdays, Thursdays, and Fridays between 6 am and 10
pm, whereas all the other times are defined as off-peak.
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FIGURE C.1. Number of active TNP drivers over the months in each sample

Notes: Active drivers are those who complete at least one trip in a month. The black solid line at January
identifies the month in which the policy began.
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Appendix D. Analysis of the Tax’s Impact on Border Trips and
Additional Tables and Figures

TABLE D.1. Summary statistics of border trips

Sample 18-19, pre 01/07 Sample 18-19, post 01/07 Sample 19-20, pre 01/06 Sample 19-20, post 01/06

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
VARIABLES N mean sd N mean sd N mean sd N mean sd

Panel A: Border Single TNP

Number of pickups 36,297 32.75 96.56 81,314 30.02 88.28 39,503 37.04 108.3 87,312 32.38 94.46
Trip miles 36,297 8.762 4.103 81,314 8.792 4.141 39,503 9.057 4.172 87,312 9.027 4.156
Trip price ($) 36,297 19.44 6.804 81,314 19.16 6.742 39,503 19.22 6.437 87,312 20.45 6.418
Trip minutes 36,297 25.94 10.82 81,314 24.75 10.38 39,503 26.38 10.89 87,312 24.33 9.891
Trip speed (mph) 36,297 20.43 6.696 81,314 21.48 7.037 39,503 20.87 6.953 87,312 22.39 7.205

Panel B: Border Shared TNP

Number of pickups 34,475 11.66 25.54 77,621 10.87 23.42 30,197 6.075 10.98 69,045 6.732 13.02
Trip miles 34,475 9.059 4.213 77,621 9.269 4.287 30,197 10.53 5.153 69,045 10.57 4.893
Trip price ($) 34,475 12.08 5.387 77,621 12.11 5.245 30,197 13.04 5.068 69,045 13.56 5.199
Trip minutes 34,475 31.28 12.69 77,621 30.39 12.41 30,197 30.40 12.96 69,045 28.16 11.91
Trip speed (mph) 34,475 17.51 5.564 77,621 18.47 5.888 30,197 21.63 9.327 69,045 23.47 9.312

Panel C: Border Taxi

Number of pickups 16,119 22.13 66.99 34,634 17.42 52.43 17,406 17.58 53.15 38,142 13.96 43.08
Trip miles 16,119 6.278 4.518 34,634 6.263 4.576 17,406 6.404 4.718 38,142 6.213 4.709
Trip price ($) 16,119 23.06 65.51 34,634 22.86 65.73 17,406 24.90 88.08 38,142 23.51 72.89
Trip minutes 16,119 22.54 12.18 34,634 21.65 11.70 17,406 24.20 12.61 38,142 22.60 11.69
Trip speed (mph) 16,066 16.55 8.685 34,527 17.17 9.914 17,384 15.93 9.097 38,106 16.49 9.675

Notes: The table presents summary statistics relative to different types of border trips for each route-hour
in which at least a trip occurred in Sample 18-19 or Sample 19-20.
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TABLE D.2. The effect of the tax for border trips

TNPs Taxis

(1) (2) (3) (4) (5) (6)
Single price Shared price # Single rides # Shared rides Price # Rides

Sample1920 -0.033*** 0.018 0.322*** -0.595*** -0.080 0.0388
(0.006) (0.014) (0.081) ( 0.088) (0.049) (0.759)

Sample1920× Post 0.100*** 0.044*** -0.128*** 0.180*** 0.005 0.048
(0.005) (0.008) (0.024) (0.026) (0.003) (0.032)

Observations 244,426 211,338 314,080 314,080 106,294 314,080
Adj. R-sq 0.912 0.735 . . 0.695 .
Route FE ✓ ✓ ✓ ✓ ✓ ✓
Hour FE ✓ ✓ ✓ ✓ ✓ ✓
Period FE ✓ ✓ ✓ ✓ ✓ ✓

Notes: *** p<0.01, ** p<0.05, * p<0.1. Each column describes the effect of the tax on the prices and number
(both in logs) of different types of TNP and taxi rides. All regressions include controls for the weather (in
miles) and regressionswith price as a dependent variable also control for the distance of the trip (inmiles).
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